
www.manaraa.com

 بسم الله الرحمن الرحيم

غزة – الإسلامية الجامعة

العليا الدراسات عمادة

 المعلومات تكنولوجيا كلية

 Islamic University – Gaza

Deanery of Graduate Studies

Faculty of Information Technology

A Cloud-Based Applications Transformation Framework

for the Palestinian e-Government

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master in Information Technology

By

Ibrahim AbuJalanbo

120110631

Dr. Rebhi Soliman Baraka

Supervisor

 (1437 H) October, 2015

www.manaraa.com

www.manaraa.com

www.manaraa.com

I

Dedication

To my father (Allah please his soul)

To my family

To my teachers

To my friends

To my colleagues

To Palestine

www.manaraa.com

II

Acknowledgment

I thank Allah for giving me the strength and ability to complete this study despite all the difficult

circumstances. I would like to express my sincere gratitude to my advisor Dr. Rebhi Baraka, without his

help, guidance, and continuous follow-up; this research would never have been.

Also I would like to extend my thanks to the academic staff of the Faculty of Information Technology

who helped me during my Master’s study and taught me different courses. I cannot forget to express my

thanks to the database administrator, system administrator, and software development staff in

Government Computer Center and Ministry of Telecom and Information technology. I would like to

thank my colleagues and classmates for making my study a great experience, useful, enjoyable, and full

of warm atmosphere.

Last but not least, I am greatly indebted to my family for their support during my course studies

and during my thesis work.

www.manaraa.com

III

Abstract

The acceleration in the pace of software development in the Palestinian e-Government shows a

critical issue in delivering services due to the lack of resources and due the geographically

distributed government institutes which leads to a problem in integrating government applications

and services. The cloud computing has been adapted on large scales and enables public sectors

to achieve speed, agility, security, and integrability by providing services and applications as

software as a service Saas.

While cloud-based solutions are adopted in industry with a great pace, and applications have been

developed rapidly in e-government, there appears a serious need for a cloud transformation

framework that can be used for the Palestinian e-government applications transformation to the

cloud.

This research presents and analyzes the current Palestinian e-Governemnt cloud environment,

and discusses the software development model, The research proposes a framework for

applications transformation to the cloud for the Palestinian e-Government cloud architecture,

defining its components and designing the software development lifecycle as a component of the

proposed framework which will be used to transform applications to the cloud environment.

The proposed framework is evaluated using a scenario based software architecture evaluation

method and shows that it achieves the quality attributes set as goals for the framework which

are: Integrabality, and agility. Moreover, a scenario of application transformation is adapted

and validated. A specific usage scenario for the framework is discussed and further shows that

the framework accomplishes its functionality and quality attributes.

Keywords e-Government, Cloud Computing, Software Engineering, Service Engineering

Models, Service Oriented Architecture (SOA), Integrability

www.manaraa.com

IV

 عنوان البحث

 اطار تحول تطبيقات الحكومة الالكترونية الفلسطينية الى الحوسبة السحابية

 الملخص

تطوير البرمجيات في الحكومة الالكترونية الفلسطينية يظهر مدى كبير في قصور ان التسارع الملحوظ في

هذه العملية نظرا لقلة الموارد والتباعد الجغرافي بين المؤسسات الحكومية مما يؤدي الى ظهور مشكلة

 التكاملية بين التطبيقات الحكومية.

القطاع الحكومي من الاستفادة من مميزاته ظهور مفهوم الحوسبة السحابية وانتشاره بشكل كبير بما يمكن

 Softwareكالسرعة في التطوير والامان والتكاملية بين البرامج من خلال تقديم الخدمات الحكومية بمفهوم

as a Service.

وحيث ان مفهوم الحوسبة السحابية تم الاستفادة منه بشكل كبير في مجالات عدة وحيث ان النمو الملحوظ في

لالكترونية ظهر جليا فقد ظهرت حاجة ملحة لايجاد اطار للتحول نحو البرمجة السحابية في الحكومة الحكومة ا

 الالكترونية الفلسطينية.

يبدأ البحث بتقييم ودراسة الوضع الحالي للبيئة السحابية في الحكومة الالكترونية الفلسطينية ودراسة دورة

مية ولسطينية, ثم يقدم البحث مقترح لاطار تحول للتطبيقات الحكحياة تطوير تطبيقات الحكومة الالكترونية الف

 مكونات هذا الاطار ودورة حياة التحول.الى الحوسبة السحابية ودراسة

والتحقق "تقييم معمارية انظمة البرمجيات بالاعتماد على السيناريوهاتتم تقييم هذا الاطار باستخدام طريقة "

 agility, integrabilityمن ان هذا الاطار يحقق الاهداف المرجوة وهي

كما تم تطبيق نموذج لبعض جوانب هذا المقترح والتحقق من فاعليته وتحقيقه للاهداف وتطبيق عملية التحول

 لاحد تطبيقات الحكومة الالكترونية الفلسطينية واثبات ان هذا الاطار يحقق اهدافه.

www.manaraa.com

V

Contents
Dedication ..I

Acknowledgment ..II

Abstract ..III

List of Figures .. IX

List of Tables .. X

List of Abbreviations and Glossaries ... XI

Chapter 1 Introduction ...1

1.1. Statement of the Problem ...2

1.2. Objectives ..2

1.2.1. Main Objective ...2

1.2.2. Specific Objectives ..2

1.3. Importance of the Research ..3

1.4. Scope and Limitations of the Research ...3

1.5. Methodology ...3

1.6. Thesis Structure ...4

Chapter 2 Technical and Theoretical Foundation ...5

2.1. Cloud Computing ...5

2.1.1. Cloud Computing Service Models ...6

2.1.2. Cloud Computing Deployment Models ..9

2.2. The SOA Based Framework for the Palestinian e-Government Integrated Central Database 11

2.2.1. The SOA-Based Framework ... 11

2.2.2. SOA-Based Integrated Central Database Architecture .. 11

2.3. Cloud Attributes in Applications Transformation to Cloud .. 13

2.3.1. Agility ... 14

2.3.2. Integrability ... 14

2.3.3 Integrability in Cloud Application Transformation Framework Design .. 15

2.4. Software Engineering Models .. 16

2.5. Evaluation Methods .. 16

www.manaraa.com

VI

2.5.1. Software Architecture Evaluation Using ATAM ... 17

2.6. Technical Foundations Summarization .. 20

Chapter 3 Related Works ... 22

3.1. Service Engineering Methodologies and Frameworks. .. 22

3.1.1. Service Architecture Engineering (SAE) ... 22

3.1.2. Service-Oriented Analysis and Design (SOAD)... 26

3.1.3. Service Oriented Modelling and Architecture (SOMA) ... 28

3.1.4. Service Migration and Reuse Technique (SMART) .. 30

3.1.5. Discussions and Conclusions ... 31

3.2. Impacts of Cloud on Software Engineering .. 33

3.2.1. Federal Cloud Computing Strategy .. 33

3.2.2. Analytical Study of Agile Methodology with Cloud Computing .. 37

3.2.3. Impact of Web 2.0 and Cloud Computing Platform on Software Engineering.................................... 38

3.2.4. Model-Based Migration of Legacy Software Systems to Scalable and Resource-Efficient Cloud-Based

Applications: The CloudMIG Approach ... 41

3.3. Discussions and Conclusions .. 43

Chapter 4 Current Palestinian Cloud Environment.. 44

4.1. Palestinian Cloud Infrastructure ... 44

4.1.1. Service Models... 44

4.1.2. Deployment Model .. 47

4.2. Current Palestinian e-Government Software Engineering Model ... 47

4.2.1. Palestinian e-Government Software Engineering Model Pros and Cons .. 49

4.3. Conclusion .. 51

Chapter 5 The Palestinian e-Government Cloud Applications Transformation Framework 52

5.1. Application Profile .. 53

5.1.1. Project Profile .. 53

5.1.2. Monitoring ... 54

5.1.3. Knowledge Base ... 55

www.manaraa.com

VII

5.2. Process software Lifecycle Development ... 55

5.2.1. Assessment .. 55

5.2.2. Analysis .. 56

5.2.3. Plan .. 58

5.3. SaaS Architecture ... 59

5.3.1. Specifications Component ... 59

5.3.2. Realization Component ... 61

5.4. Cloud Infrastructure ... 61

5.5. Conclusion .. 61

Chapter 6 Framework Scenario Applying .. 62

6.1. Scenario 1: Administrative Correspondence System (ACS) .. 62

6.1.1. Application Profile ... 62

6.1.2. Process Software Lifecycle .. 63

6.1.3. SaaS Architecture .. 69

6.2. Scenario 2: National Frequency System (NFS) ... 72

6.2.1. Application Profile ... 72

6.2.2. Process Software Lifecycle .. 73

6.3. Discussions and Conclusions .. 73

Chapter 7 Framework Evaluation .. 75

7.1. Framework Quality Attributes .. 75

7.1.1. Integrability ... 75

7.1.2. Agility ... 75

7.2. Framework Evaluation using ATAM Method ... 76

7.2.1. Integrability Evaluation Scenarios ... 77

7.2.2. Agility Evaluation Scenarios ... 77

7.3. Showing Quality Attributes Achievement Through a Usage Scenario ... 78

7.4. Conclusion and discussion .. 79

www.manaraa.com

VIII

Chapter 8 Conclusions and Future Work ... 80

8.1. Conclusions ... 80

8.2. Future Work .. 80

References ... 81

www.manaraa.com

IX

List of Figures

Figure 2.1 Cloud Service Models ...7

Figure 2.2 The SOA-based Integrated Central Database Framework .. 13

Figure 2.3 Technical Foundations Dependancies ... 211

Figure 3.1 SAE SOA reference framework ... 233

Figure 3.2 SOAD Architecture and Components .. 266

Figure 3.3 SOMA Architecture and Components ... 299

Figure 3.4 SMART Architecture and Components .. 30

Figure 3.5 SMART Activities ... 31

Figure 4.1 The Palestinian Cloud Infrastructure ... 45

Figure 4.2 The Government Email System (Saas Case) .. 45

Figure 4.3 The Pharmacy System (Paas Case) .. 46

Figure 4.4 The Palestinian e-Government Development Process Model ... 48

Figure 5.1 The Palestinian e-Government Cloud Transformation Framework .. 53

Figure 5.2 The Cloud Application Transformation Lifecycle Component ... 56

Figure 5.3 Service Analysis Activities .. 57

Figure 6.1 The ACS Context Diagram .. 66

Figure 6.2 The Use Case Diagram of the ACS Application .. 67

Figure 6.3 ACS Service Analysis .. 68

Figure 6.4 ACS Cloud Application Context Diagram ... 69

Figure 7.1 Usage Scenario for Applying Framework .. 80

file:///C:/Users/hani/Google%20Drive/master/thesis/thesis.docx%23_Toc434101792
file:///C:/Users/hani/Google%20Drive/master/thesis/thesis.docx%23_Toc434101795
file:///C:/Users/hani/Google%20Drive/master/thesis/thesis.docx%23_Toc434101796
file:///C:/Users/hani/Google%20Drive/master/thesis/thesis.docx%23_Toc434101798
file:///C:/Users/hani/Google%20Drive/master/thesis/thesis.docx%23_Toc434101799
file:///C:/Users/hani/Google%20Drive/master/thesis/thesis.docx%23_Toc434101800
file:///C:/Users/hani/Google%20Drive/master/thesis/thesis.docx%23_Toc434101802
file:///C:/Users/hani/Google%20Drive/master/thesis/thesis.docx%23_Toc434101803
file:///C:/Users/hani/Google%20Drive/master/thesis/thesis.docx%23_Toc434101804
file:///C:/Users/hani/Google%20Drive/master/thesis/thesis.docx%23_Toc434101805
file:///C:/Users/hani/Google%20Drive/master/thesis/thesis.docx%23_Toc434101807
file:///C:/Users/hani/Google%20Drive/master/thesis/thesis.docx%23_Toc434101808
file:///C:/Users/hani/Google%20Drive/master/thesis/thesis.docx%23_Toc434101809

www.manaraa.com

X

List of Tables

Table 3.1 SAE View Descriptions ………………………………………………….... 24

Table 3.2 Service Engineering Model Properties……………………………….……. 35

Table 6.1 System Service Specifications……………………………………………... 72

Table 7.1 Integrability Supporting Features ………………………………..…….….. 78

Table 7.2 Agility Supporting Features ………………………….………….……….…79

www.manaraa.com

XI

List of Abbreviations and Glossaries

ATAM Architecture Tradeoff Analysis Method is a Scenario Based Software Architecture

Evaluation Method.

ESB Enterprise Service Bus (ESB) is a software architecture model used for designing and

implementing the interaction and communication between mutually interacting software

applications in Service Oriented Architecture.

HTTP Hyper Text Transfer Protocol (HTTP) is a networking protocol for distributed,

collaborative, hypermedia information systems. HTTP is the foundation of data

communication for the World Wide Web.

SLA Service Level Agreement (SLA) is a part of a service contract where the level of service

is formally defined. The term SLA is sometimes used to refer to the contracted delivery

time or performance.

SOA Service-Oriented Architecture (SOA) is a set of principles and methodologies for

designing and developing software in the form of interoperable services. These services

are well-defined business functionalities that are built as software components (discrete

pieces of code and/or data structures) that can be reused for different purposes.

ACL Is a list of permissions attached to an object. An ACL specifies which users or system

processes are granted access to objects, as well as what operations are allowed on given

objects.

SaaS Is a cloud computing model in which software is licensed on a subscription basis and is

centrally hosted. It is sometimes referred to as "on-demand software".SaaS is typically

accessed by users using a thin client via a web browser. SaaS has become a common

delivery model for many business applications, it is a software delivery method that

provides access to software and its functions remotely as a Web-based service.

www.manaraa.com

XII

PaaS Is a cloud computing model that delivers applications over the Internet. In a PaaS model,

a cloud provider delivers hardware and software tools - usually those needed for

application development - to its users as a service. A PaaS provider hosts the hardware

and software on its own infrastructure. As a result, PaaS frees users from having to install

in-house hardware and software to develop or run a new application.

IaaS Is a form of cloud computing that provides virtualized computing resources over the

Internet.

www.manaraa.com

Chapter 1 Introduction

1

Chapter 1 Introduction

Recently, the applications development in the Palestinian e-Government increased significantly, the e-

services and applications are developed and hosted in the e-Government cloud.

The increasing in software development raises retreat in integrability between e-Government

applications and e-services, this issue is critically need to be solved, because the e-Government

applications have many interactions among each other's [1].

In addition its appear the absence of the agility in software development, especially with those

applications changed frequently in user requirements, or changes applied on their architecture.

On the other hand, cloud computing has been spread, and adapted in business and public sector

organizations obviously, and introduce solutions for various issues such as speed, security, agility,

reduced costs, and ability to integrate easily [2].

Despite of the readiness of the Palestinian cloud infrastructure, the e-Government applications still does

not benefit from the cloud benefits, and issues such as integrability and agility needs to be solved. In

this research we introduced agility and integrability as the main issues to be studied and solved.

Transformation to cloud environment needs considering technical requirements to make sure that the

application reside on a stable, reliable infrastructure, data will be protected, developing application will

be agile, and the application will be integrated with others applications. These requirements can be

achieved by adapting a transformation model or framework. Currently there are various service

engineering models and frameworks used for transforming applications to the cloud to be presented as

software as a service [3]. These models and frameworks will be discussed in details in thesis work, and

their pros and cons will be introduced.

Currently the Palestinian cloud infrastructure has been installed and virtual servers are used for hosting

e-Government applications. The cloud service models are adapted such as software as a service (Saas),

platform as a service (Paas), and infrastructure as a service (Iaas), and the cloud community deployment

model is adapted according to the e-Government policies.

To benefit from cloud features, there is a serious need for a cloud transformation framework that can

be used for the Palestinian e-government applications transformation to the cloud to overcome the

limitations in agility and integrability of the current e-Government applications development [1].

The current cloud environment needs to be studied, and the current software development model needs

to be analysed to define its pros and cons and its shortcoming in transformation process, and design the

www.manaraa.com

Chapter 1 Introduction

2

Palestinian e-Government cloud application transformation framework. In this framework, the

Palestinian e-Government cloud architecture needs to be defined, some of the cloud components need

to be built, and the others need to be integrated, in addition the process lifecycle for transforming

applications needs to be clarify.

Next we introduce the statement of problem, objectives, importance of the research, scope and

limitations, methodology, and finally the thesis structure.

1.1. Statement of the Problem

In spite of the significant acceleration in the development of government applications in the

Palestinian e-Government, these applications still suffer from deficiencies such as security,

reliability, availability, and integrability among them as well as other government services. In

addition to that, the development process in the e-Government applications suffer from the lack of

the agility, since the applications are developed depending on the traditional software engineering

models.

In this research we introduce integrability, and agility as a target attributes to be solved, because the

moving to the cloud shows critical issues in applications and services integrability, whereas the

applications will be introduced as SaaS. In addition the transformation process need to maintain the

application architecture, and the customer needs to achieve agility transformation.

There appears a serious need for a cloud transformation framework that can be used for the Palestinian

e-Government applications transformation to the cloud. This framework needs to be architected, its

components need to be defined, and the lifecycle for transformation needs to be defined.

1.2. Objectives

1.2.1. Main Objective

To design a framework for transforming the Palestinian e-Government applications into a

cloud-based environment that achieves integrability and agility.

1.2.2. Specific Objectives

The specific objectives of the project are:

 Analyse the current Palestinian e-Government cloud environment and determine the

shortcomings and requirements against the integrability and agility in transforming

applications to the cloud environment.

www.manaraa.com

Chapter 1 Introduction

3

 Design the Palestinian e-Government cloud transformation framework.

 Realizing the framework through applying and transforming a case of e-Government

applications.

 Evaluate the proposed framework for integrability and agility using ATAM method.

1.3. Importance of the Research

The proposed transformation framework will benefit the e-Government applications and their

development in the following ways:

 Solving the integrability issues between the e-Government applications.

 The cloud based software development cycle needs more study and adaptation in order to

design special transformation framework for the Palestinian e-government cloud applications

transformation.

 The proposed framework would have a great value towards applying software engineering

models in the governmental applications transformation.

 The framework would allow an easy software management and good time estimation for large

and medium projects transformation.

 The framework would add a new model to the Software as a Service SaaS software

engineering community.

1.4. Scope and Limitations of the Research

 The designed framework will address the targeted characteristics such as the integrability and

the agility.

 The framework will not be fully implemented but rather a scenario will be applied.

 The proposed software lifecycle component will cover the software lifecycle faces used for

transforming applications to the cloud.

 The framework components will function in the Software as a service cloud model.

 The platform model and the infrastructure model will be a part of the framework but will not be

implemented in this research.

1.5. Methodology

To achieve the objectives of the research the following methodology will be followed:

1. Study and analyse the current software engineering model of the Palestinian e-government

www.manaraa.com

Chapter 1 Introduction

4

application transformation to the cloud.

2. Study and investigate frameworks used for applications transformation to the cloud.

3. Develop the proposed framework:

a. Specify the requirements and framework architecture.

b. Define the components of the framework.

c. Specify the interactions between framework components.

d. Evaluate the framework against the objectives which are the integrability and the agility by

applying the designed framework on a suggested application as a case study.

1.6. Thesis Structure

The thesis consists of eight chapters:

Chapter 2 Technical and theoretical Foundation: describes the technical foundations needed for thesis

work, cloud computing, software engineering from Cloud perspective.

Chapter 3 Related Works: presents works related to service engineering methodologies, and the

impacts of cloud on software engineering and strategies.

Chapter 4 Current Palestinian cloud environment: presents the current situation of the cloud

infrastructure, hardware installed, software types, and counts, and the readiness for transformation to

cloud.

Chapter 5 Cloud applications transformation Framework: presents the proposed framework for the

Palestinian e-Government applications transformation to the cloud and describes the components and

their interaction.

Chapter 6 Framework Scenario Applying: is devoted to the presenting the applying of the framework

scenario.

Chapter 7 Framework Evaluation: presents the evaluation of the framework using scenario based

software architecture evaluation method, and validates the scenario applying using the proof of

concept validation approach.

Chapter 8 Conclusions and Future Work: discusses the final conclusions and presents possible future

works.

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

5

Chapter 2 Technical and Theoretical Foundation

This chapter describes the technical foundations needed for thesis work, including cloud computing,

software as a service in cloud computing, Government SOA based framework, Agility and integrability

in application transformations, and finally evaluation methods for software architecture and proof-of-

concept.

2.1. Cloud Computing

Cloud computing is a type of computing that relies on sharing computing resources rather than having

local servers or personal devices to handle applications [2], which could solve the problem of lack of

resources. The National Institute of Standards and Technology's (NIST) defines cloud computing as

" A model for enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications and services) that

can be rapidly provisioned and released with minimal management effort or service provider

interaction". This cloud model is composed of five essential characteristics, three service models,

and four deployment models [28].

Recently, cloud computing has captured significant attention as both business and computing model

that enables public sector organizations to achieve objectives such security, speed, agility, integrity,

and maintainability [1].

Cloud computing refers to flexible self-service, network-accessible computing resource pools that

can be allocated to meet demand. Services are flexible because the resources and processing power

available to each can be adjusted on the fly to meet changes in need or based on configuration settings

in an administrative interface, without the need for direct IT personnel involvement. These resources

are assigned from a larger pool of available capacity (for examples, memory, storage, CPUs) as

needed, allowing an organization to spin up a proof-of-concept application, expand that to a full

prototype, and then roll it out for full use without having to worry about whether existing hardware,

data centre space, power, and cooling are capable of handling the load. Cloud computing allows the

allocation of resources to be adjusted as needed, creating a hardware-independent framework for

future growth and development [4].

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

6

For many years, the adoption of cloud computing has brought a massive change and it has become a

trend in the field of information technology because it initiates significant cost reductions and

provides new business opportunities for its users and providers [5].

The benefits of using cloud computing are: reduced cost for hardware and maintenance, global

accessibility, and flexibility and highly automated processes, in which customers do not need to

worry about routine concerns, such as software upgrading [5].

2.1.1. Cloud Computing Service Models

Cloud computing offers many different levels of services, from individual Software as a Service

(SaaS) to Platform as a Service (PaaS) development environments and even Infrastructure as a

Service (IaaS) complete solutions resident in the cloud. Some vendors now term even Everything

as a Service (XaaS) as an offering, although this is more of a marketing term melding traditional

and cloud computing than an established standard [4].

Depending on what resources are shared and delivered to the customers, there are four types of

cloud computing. In cloud computing terminology when hardware such as processors, storage

and network are delivered as a service it is called infrastructure as a service (IaaS). When

programming platforms and tools like Java, Python, .Net, MySQL and APIs are delivered as a

service it is called platform as a service (PaaS). When applications are delivered as a service it is

called software as a service (SaaS).

Cloud services are aligned with their service model, in which each level of service abstraction

will be associated with the term as a Service (aaS). Consumers of cloud resources access these

“as a Service” resources via their favourite web browser without considering whether they are

consuming an application or an entire infrastructure within the cloud.

Cloud vendors often describe their products as Backup as a Service (BaaS), Database as a Service

(DBaaS), or even Everything as a Service (XaaS) to fit their particular product’s function [4].

The service models are often represented in the form of a pyramid like that shown in Figure 2.1

because IaaS provides the most fundamental service category and each successive level includes

elements of the lower-level service categories.

Currently the Palestinian cloud infrastructure has been installed the cloud service models are

adapted as mentioned in details in section 4.1.

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

7

Figure 2.1 Cloud Service Models [4]

a. Infrastructure as a Service (IaaS)

IaaS is located at the bottom level of the service chart. It consists of all logical and physical

resources needed to build the cloud. The foundation of cloud key services is virtualized platforms,

which evolves from a virtual private server. Core IaaS elements include: data centre housing,

virtual computing, storage, and backup.

Customers are offered with the possibility of buying the all package of memory, software. Due to

this, the services by IaaS are aimed to reduce the time and costs to install a system. Despite being

unable to manage the fundamentals of cloud, consumers are still able to control on their own OS,

installed software and storage capacity completely [6].

The IaaS catalogue is comprehensive, enabling agencies to pick and choose from a range of

services.

There are some core characteristics which describe what IaaS is. IaaS is generally accepted to

comply with the following;

• Resources are distributed as a service.

• Allows for dynamic scaling.

• Has a variable cost, utility pricing model.

• Generally includes multiple users on a single piece of hardware [6].

b. Platform as a Service (PaaS)

Platform as a Service is another application delivery concept where resources needed to build

applications and services should not to be downloaded and installed, but are accessible through

the Internet. It is not so simple to draw a distinct line between PaaS and IaaS, also companies that

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

8

provide infrastructure services offer platform services as well [7]. Services that PaaS provides

include: application design, development, testing, deployment, hosting, team collaboration, web

service integration, database integration, security, scalability, storage, state management, and

versioning.

c. Software as a Service (Saas)

Software as a Service (SaaS) is a software distribution model in which applications are hosted

by a vendor or service provider and made available to customers over a network, typically the

Internet. This research focuses on this cloud service model as we introduce a transformation

framework for applications to run on the e-Government cloud as a software as a service.

The software as a service model composes services dynamically, as needed, by binding several

lower-level services, thus overcoming many limitations that constrain traditional software use,

deployment, and evolution [8].

SaaS focuses on separating the possession and ownership of software from its use. Delivering

software’s functionality as a set of distributed services that can be configured and bound at

delivery time can overcome many current limitations constraining software use, deployment, and

evolution [8].

SaaS is becoming an increasingly prevalent delivery model as underlying technologies that

support web services and service-oriented architecture (SOA) mature and new developmental

approaches. Meanwhile, broadband service has become increasingly available to support user

access from more areas around the world [9]. benefits of the SaaS model include:

 Easier administration

 Automatic updates and patch management

 Compatibility: All users will have the same version of software.

 easier collaboration, for the same reason

 Global accessibility.

Saas is based on service oriented architecture (SOA) and virtualization of hardware and software

resources. Because of the virtualization technique, physical resources can be linked dynamically

to different applications running on different operating systems. In Section 2.2 we introduce the

SOA based framework for the Palestinian e-Government which will be integrated to the

proposed framework as the data service integrability component.

Software engineering in applications development starts with an explicit process model having

framework of activities which are synchronized in a defined way, in Saas applications

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

9

development , there are already several service engineering methodologies for service design,

we introduce these methodologies section 3.1.

2.1.2. Cloud Computing Deployment Models

With most organizations focusing on leveraging the cloud in order to cut capital expenditure and

control operating costs, there is aggressive growth in business for cloud adoption. However, the

cloud can bring security risks and challenges for IT Management, which can be more expensive

for the organization to deal with, even considering the cost saving achieved by moving to the cloud.

Therefore, it is very important for businesses to understand their requirements before opting for

various deployment models available on the cloud [4].

There are primarily four cloud deployment models, which are discussed below, along with

scenarios in which a business could opt for each. These models have been recommended by the

National Institute of Standards and Technology (NIST).

a. Private Clouds

This model doesn’t bring much in terms of cost efficiency: it is comparable to buying, building

and managing infrastructure. Still, it brings in tremendous value from a security point of view.

During their initial adaptation to the cloud, many organizations face challenges and have

concerns related to data security. These concerns are taken care of by this model, in which

hosting is built and maintained for a specific client. The infrastructure required for hosting can

be on-premises or at a third-party location. Security concerns are addressed through secure-

access VPN or by the physical location within the client’s firewall system [5].

Several SaaS applications, provide options to their clients to maintain their data on their own

premises to ensure data privacy is maintained according to the requirements of the particular

business.

b. Community Clouds

In the community deployment model, the cloud infrastructure is shared by several organizations

with the same policy and compliance considerations. This helps to further reduce costs as

compared to a private cloud, as it is shared by larger group.

Various state-level government departments requiring access to the same data relating to the

local population or information related to infrastructure, such as hospitals, roads, electrical

stations, etc., can utilize a community cloud to manage applications and data [4].

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

10

The cloud infrastructure is provisioned for exclusive use by a specific community of consumers

from organizations that have shared concerns (e.g., mission, security requirements, policy, and

compliance considerations). It may be owned, managed, and operated by one or more of the

organizations in the community, a third party, or some combination of them, and it may exist on

or off premises.

According to the policies and Government Computer Centre, the deployment model in the e-

Government cloud is the community cloud (see section 4.1.2).

c. Public Clouds

The public cloud deployment model represents true cloud hosting. In this deployment model,

services and infrastructure are provided to various clients. Google is an example of a public

cloud. This service can be provided by a vendor free of charge or on the basis of a pay-per-user

license policy. This model is best suited for business requirements wherein it is required to

manage load spikes, host SaaS applications, utilize interim infrastructure for developing and

testing applications, and manage applications which are consumed by many users that would

otherwise require large investment in infrastructure from businesses. This model helps to reduce

capital expenditure and bring down operational IT costs.

d. Hybrid Clouds

This deployment model helps businesses to take advantage of secured applications and data

hosting on a private cloud, while still enjoying cost benefits by keeping shared data and

applications on the public cloud. This model is also used for handling cloud bursting, which

refers to a scenario where the existing private cloud infrastructure is not able to handle load

spikes and requires a fallback option to support the load. Hence, the cloud migrates workloads

between public and private hosting without any inconvenience to the users.

Many PaaS deployments expose their APIs, which can be further integrated with internal

applications or applications hosted on a private cloud, while still maintaining the security

aspects. Microsoft Azure and Force.com are two examples of this model.

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

11

2.2. The SOA Based Framework for the Palestinian e-Government Integrated

Central Database

The proposed framework depend on the e-Government SOA framework as the data service

integration component, this component is responsible for the techniques used for the service

implementation.

The SOA Based Framework for the Palestinian e-Government introduced by [1] has four layers: the

front end user interface layer which presents the access interface that the end user interacts with, the

common service layer which provides front end services that commonly needed by e-Services, the

data access layer which addresses database access gateway either centralized or decentralized, and

the infrastructure layer which includes physical and low level software components. The Central

Database is one of the components of the data access layer.

2.2.1. The SOA-Based Framework

SOA is adopted in the transformation of the Central Database due to its open architecture and

standards that cope with heterogeneous systems and applications with high degree of

interoperability and flexibility. A typical architecture of SOA includes three main roles that interact

using standard messaging. The roles are service provider, service registry and service client [1].

The service is first published by the service provider to the service registry which is a repository

that holds service interfacing information. The service client searches the service registry for a

specific service, and gets its binding information. The client uses binding information to consume

the service provided by the service provider [1].

Web Services are used as a tactical realization of the SOA architecture. A Web Service is a software

component that another software application can access automatically on the Web.

ESB provides the SOA solution with the necessary integration infrastructure for Web Services. It

integrates applications, services, and the registry. ESB is event driven and provides standard

messaging between services. It routes and transports service requests to the appropriate service

provider. A typical ESB provides capabilities such as: routing, message transformation, protocol

transformation, service mapping, Service orchestration, transaction management, and Security [1].

2.2.2. SOA-Based Integrated Central Database Architecture

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

12

The SOA based framework as shown in Figure 2.3 consists of a number of components. Each

component satisfies one or more of the requirements and leads to the achievement of the goals of

the framework.

Central Database Service Bus: Is considered the central platform of integration between different

Web Services, and provides routing and transportation features for Web Service requests as well

QoS feature for the framework. It is used and accessed by government institutions over the

government private network as well as over the Internet for non-government institutions. It satisfies

the reachability requirement of the framework.

Service Registry: Is used to provide a search point of access to services and database definitions

and metadata for all services provided by the Central Database model. The registry is based on

Universal Description Discovery and Integration (UDDI).

Government Informational Service: These Web Services provide access to basic informational

queries and allow consumers to benefit from the government Central Database along with its

presentation logic. This reliefs them from invoking services that interacts directly with the Central

Database and return record sets that need to be manipulated by the developer. An example Web

Service is a one that returns the social information of a citizen or the administrative record of an

employee.

Service Orchestration: This component is responsible for managing composite services. The

composite service is invoked by a client and in turn it invokes and orchestrates different services to

achieve the requirement of the composite service.

Database Management Adapter: This adapter allows the Central Database Service Bus to accept

requests for data sources from client systems and then invokes the relevant adapter to retrieve the

data and return it in a standard format to the requester. It is used to hide the database management

details from the rest of the Web Services. It communicates directly with the underlying data sources

and provides database specific connectivity capabilities. This component achieves the accessibility

requirement.

Database Replication Service: This service is used to manage replication between the Central

Database and ministries databases. It handles connection types, mode of replications, access

permissions. This service achieves the replication requirement.

Systems Management Service: This service is used to manage and monitor the Central Database

service bus, and Web Services. It collects metrics, provides framework performance reporting

capabilities.

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

13

Security Assurance Service: This service insures that security policies are adhered to. It is invoked

by different services to add security layer to their functionality. Provided security functionalities

include authentication, authorization, and nonrepudiation.

The interaction among these components is performed through the Central Database Service Bus

which integrates the components and acts as the glue that connects them together. It routes,

transports, formats requests and responses of services and provides service discovery through the

registry.

Figure 2.2 The SOA-based Integrated Central Database Framework [1]

2.3. Cloud Attributes in Applications Transformation to Cloud

Transforming applications to cloud has many benefits, including lower costs, better support,

Reliability, availability, scalability, and infrastructure flexibility.

In this research we focus on agility, and integrability, as quality attributes to solve the introduced

issues.

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

14

2.3.1. Agility

Agile methodology is an alternative to traditional software development methodologies. It helps

application development to response to customer changes, and improves the software development

process [10].

The great benefit of transforming applications to the cloud is the agility, Today, businesses have to

respond with flexibility and speed to ever-changing customer demand, market opportunities and

external threats. Software as a service is a special way to look develop cloud applications, focusing on

their adaptability - the ability to respond to changing and new requirements. It is more than evident

that agile approaches to software development seem to be a natural fit for developing such

systems[11].

With agile development, the application is constantly subjected to the reality check of actual users

putting it through its paces. As a result, developers are less likely to get ahead of themselves by

guessing what people will want.

To achieve greater agility in software as a service development, agile methodologies are seemed to be

fit to develop such systems. Although agile development methodologies are successful in dealing with

changes, but they don’t act well against complexities which are the nature of Saas projects because of

the lack of the pre-defined design of system. For developing each system, a structure or architecture

is needed for better communication between stakeholders and when the system is larger and more

complex, the architecture is required more.

To realize the agility concept and achieves the research goals, a well-defined framework architecture

need to be design, the components need to be clarify, and during application transformation the

application architecture should be discussed with stockholders.

The Agile Manifesto [10] established a common set of overarching values and principles for all of

the individual agile methodologies at the time. The manifesto details four core values for enabling

high-performing teams to achieve agile development.

 Individuals and their interactions.

 Delivering working software.

 Customer collaboration.

 Responding to change.

2.3.2. Integrability

Integrability means an ability to make separately developed components of a system to work correctly

together. Integrability is related to interoperability and interconnectivity.

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

15

Interoperability is the ability of software to use the exchanged information and to provide something

new originated from exchanged information whereas interconnectivity is the ability of software

components to communicate and exchange information [12].

Integrability is critical to the success of any application, especially within enterprise organizations. Its

prerequisites are a bridge between Saas applications, data warehouses, and cloud framework

components [13].

SaaS approach to integration leverages a set of standard web service application programming

interfaces published by the Saas solution provider (SOA framework in this research). All data

integration is executed through these APIs over the internet, enabling Saas solution providers to

continuously provide upgrades to functionality without breaking existing integrations.

Complex application integration requirements challenge even the best Saas applications today, there

are still limitations and pitfalls that organizations must be wary of. While organizations encounter

some new integration challenges with Saas, they still faced with many of the same challenges of

traditional application integration.

The cloud framework architecture can increase the integration between applications, as the most

components of the framework works and interacts with all cloud applications, this make the integration

process more stable.

2.3.3 Integrability in Cloud Application Transformation Framework Design

Once the fundamental integrability requirements have been established, the process of designing

the integrability can begin. Given that SaaS application integrability typically occur over the

internet, the integrability architecture must consider the locations of the different on premise

source and target systems within the network. Understanding the connections and the interactions

between the framework components will offer immediate insight into integrability.

The functionality offered by SaaS applications can be leveraged only if the data to be acted upon

is stored within the SaaS application's data tier. This is fundamental to most SaaS applications

and often leads to data replication and synchronization between cloud applications.

In the Palestinian e-Government, all application's data are stored in the government data center,

and the SOA based framework responsible for managing the data access process for all cloud

applications (Section 2.2).

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

16

2.4. Software Engineering Models

A software process model is the set of activities and associated results that produce a software product.

There are four fundamental process activities that are common to all software processes:

1. Software specification where customers and engineers define the software to be produced and its

constraints.

2. Software development where the software is designed and programmed.

3. Software validation where the software is checked and validated against customer requirements.

4. Software evolution where the software is modified to adapt it to changing customer and market

requirements.

A software process model is a simplified description of a software process that presents one view of that

process. Process models may include activities that are part of the software process, software products

and the roles of people involved in software engineering.

Most software process models are based on one of three general models or paradigms of software

development:

1. The waterfall approach this takes the above activities and represents them as separate process

phases such as requirements specification, software design, implementation, testing and so on. After

each stage is defined it is ‘signed-off’, and development goes on to the following stage.

2. Iterative development this approach interleaves the activities of specification, development and

validation. An initial system is rapidly developed from very abstract specifications. This is then

refined with customer input to produce a system that satisfies the customer’s needs. The system may

then be delivered. Alternatively, it may be re-implemented using a more structured approach to

produce a more robust and maintainable system.

3. Component-based software engineering: this technique assumes that parts of the system already

exist. The system development process focuses on integrating these parts rather than developing them

from scratch.

2.5. Evaluation Methods

In this section we introduce evaluation methods used to testify software architecture and validate the

proposed framework. The evaluation considers quality attributes and is based on a method used for

analyzing software architectures against quality attributes and is called Architecture Tradeoff Analysis

Method (ATAM).

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

17

2.5.1. Software Architecture Evaluation Using ATAM

Here we address software architecture evaluation methods and the ATAM approach as it is the

method to be used for the architecture evaluation. Architectural design decisions determine the

ability of the system to meet functional and quality attribute requirements. In the architecture

evaluation, the architecture should be analysed to disclose its strengths and weaknesses, while

eliciting any risks [14]. Two comparison criteria for software architecture are identified, namely,

early software architecture evaluation and late software architecture evaluation. In the thesis work

we are using the former one for evaluation, since we are proposing a framework and it does not

have detailed architecture components. Early software architecture evaluation has the following

features:

 It is a scenario-based evaluation and do not need data measured from implementation.

 It does not require metric usage.

 It can be based on mathematical model, simulation based or experience based.

 It requires the participation of the stakeholders.

 It has several methods that are discussed in a large volume of software engineering literature,

among these are: Software Architecture Analysis Method (SAAM), Architecture Level

Maintainability Analysis (ALMA), Architecture Tradeoff Analysis Method (ATAM), and

Performance Analysis of Software Architecture (PASA)

ATAM is the most suitable for thesis framework evaluation among the mentioned methods since

its superior to SAAM, and both ALMA and PASA evaluate for attributes other those to be

evaluated in the proposed framework. The ATAM method -developed by the Carnegie Mellon

Software Engineering Institute (SEI)-, relies on the elicitation of quality attribute scenarios from a

diverse group of system stakeholders. The ATAM is an enhanced method for the SAAM. The

purpose of the ATAM is to assess the consequences of architectural decisions in light of quality

attribute requirements [15].

The ATAM gets its name because it not only reveals how well an architecture satisfies particular

quality goals (such as performance or modifiability), but it also provides insight into how those

quality goals interact with each other—how they trade off against each other. Such design

decisions are critical; they have the most far-reaching consequences and are the most difficult to

change after a system has been implemented [15]. The method was created to uncover the risks

and tradeoffs reflected in architectural decisions relating to those quality attribute requirements.

Quality attributes, also known as nonfunctional requirements, include usability, performance,

scalability, and Interoperability, and so on. One of the positive consequences of using the ATAM

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

18

is a clarification and concretization of quality attribute requirements. Quality attribute scenarios

give precise statements of usage, performance and growth requirements, various types of failures,

and various potential threats and modifications [16]. Once the important quality attributes are

identified, the architectural decisions relevant to each high-priority scenario can be illuminated

and analysed with respect to their appropriateness [17]. The resulting analysis yields:

 Risks: architectural decisions that might create future problems for some quality attribute.

 Non-risks: architectural decisions that are appropriate in the context of the quality attribute

that they affect.

 Tradeoffs: architectural decisions that have an effect on more than one quality attribute.

 Sensitivity points: a property of one or more components, and/or component relationships,

critical for achieving a particular quality attribute requirement.

The ATAM analysis of the quality attribute scenarios gives insight into how well a particular

transformation framework architecture satisfies the particular quality attribute goals of these

scenarios and how certain quality attributes interact with each other in the framework context. The

ATAM focuses on quality attribute requirements. The major goals of ATAM are to [15]:

 Elicit and refine a precise statement of the architecture’s driving quality attribute requirements.

 Elicit and refine a precise statement of the architectural design decisions.

 Evaluate the architectural design decisions to determine if they satisfactorily address the

quality requirements.

In ATAM there are three types of scenarios [15]: use case scenarios (these involve typical uses of

the existing system and are used for information elicitation); growth scenarios (these cover

anticipated changes to the system), and exploratory scenarios (these cover extreme changes that

are expected to “stress” the system). These different types of scenarios are used to probe a system

from different angles, optimizing the chances of surfacing architectural decisions at risk.

Examples of each type of scenario follow.

 Use Case Scenarios

Use case scenarios describe a user’s intended interaction with the completed, running system.

For example,

1. There is a radical course adjustment during weapon release (e.g., loft) that the software

computes in 100 ms. (performance)

2. The user wants to examine budgetary and actual data under different fiscal years without

re-entering project data. (usability)

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

19

3. A data exception occurs and the system notifies a defined list of recipients by e-mail and

displays the offending conditions in red on data screens. (reliability)

4. User changes graph layout from horizontal to vertical and graph is redrawn in one second.

(performance)

5. Remote user requests a database report via the Web during peak period and receives it

within five seconds. (performance)

6. The caching system will be switched to another processor when its processor fails, and

will do so within one second. (Reliability).

 Growth Scenarios

Growth scenarios represent typical anticipated future changes to a system. Each scenario also has

attribute-related ramifications, many of which are for attributes other than modifiability.

For example, Scenarios 1 and 4 will have performance consequences and Scenario 5 might have

performance, security and reliability implications.

1. Change the heads-up display to track several targets simultaneously without affecting

latency.

2. Add a new message type to the system’s repertoire in less than a person-week of work.

3. Add a collaborative planning capability where two planners at different sites collaborate

on a plan in less than a person-year of work.

4. Migrate to a new operating system, or a new release of the existing operating system in

less than a person-year of work.

5. Add a new data server to reduce latency in use case Scenario 5 to 2.5 seconds within one

person-week.

6. Double the size of existing database tables while maintaining 1 second average retrieval

time.

 Exploratory Scenarios

Exploratory scenarios push the envelope and stress the system. The goal of these scenarios is to

expose the limits or boundary conditions of the current design, exposing possibly implicit

assumptions. Systems are never conceived to handle these kinds of modifications, but at some point

in the future these might be realistic requirements for change. And so the stakeholders might like

to understand the ramifications of such changes. For example,

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

20

1. Add a new 3-D map feature, and a virtual reality interface for viewing the maps in less than

five person-months of effort.

2. Change the underlying Unix platform to a Macintosh.

3. Re-use the 25-year-old software on a new generation of the aircraft.

4. The time budget for displaying changed track data is reduced by a factor of 10.

5. Improve the system’s availability from 98% to 99.999%.

6. Half of the servers go down during normal operation without affecting overall system

availability.

7. Tenfold increase in the number of bids processed hourly while keeping worst-case response

time below 10 seconds.

2.6. Technical Foundations Summarization

Technical foundations presented so far can be summarized in Figure 2.4. It is clear how much theories

and techniques can be used and related to the thesis problem. The interactions between these

techniques can lead to the design of the transformation framework.

www.manaraa.com

Chapter 2 Technical and Theoretical Foundations

21

Cloud application

Integrability and agility

Software as a Service

SOA based framework

Figure 2.3 Technical Foundations Dependancies

www.manaraa.com

Chapter 3 Related Works

22

Chapter 3 Related Works

In this chapter we study and investigate frameworks used for cloud computing, show how cloud

computing environment may affect the process of transformation or running of applications.

The related works are introduced in two sections, the service engineering methodologies and

frameworks which we study and analyse against the research objectives which are the integrability and

agility and will help in designing the cloud transformation framework. The other researches are about

the impacts of cloud on software engineering and strategies which help in designing the transformation

lifecycle component.

3.1. Service Engineering Methodologies and Frameworks.

Software engineering in applications development starts with an explicit process model having

framework of activities which are synchronized in a defined way. This process model describes or

prescribes how to build software with intermediate visible work products (documents) and the final

finished product i.e. the operating software. The whole development process of software from its

conceptualization to operation and retirement is called the software development lifecycle (SDLC).

SDLC goes through several framework activities like requirements gathering, planning, design,

coding, testing, deployment, maintenance and retirement. These activities are synchronized in

accordance to the process model adopted for a particular software development. There are many

process models used for service engineering like Service Architecture Engineering (SAE), Service-

Oriented Analysis and Design (SOAD), Service-Oriented Modelling and Architecture (SOMA) , and

Service Migration and Reuse Technique (SMART).

In the next sections we introduce a literature review for these service engineering methodologies, and

listing their properties. These properties will be discussed against criteria such as classifications of

framework components, service architecture, process lifecycle, project profile, and integrability and

agility during transformation process.

3.1.1. Service Architecture Engineering (SAE)

The SAE reference framework is designed to provide a comprehensive framework defined

approach for service architecture including taxonomy, classification and policies together with

repeatable service engineering processes that guide the delivery of the agile enterprise,

www.manaraa.com

Chapter 3 Related Works

23

implemented in a knowledgebase with integrability between the architecture concepts, processes,

tasks, techniques and deliverables [18].

a. SAE architecture and Components

The SAE components are classified to: Organization, Process, and Architecture as shown in

Figure 3.1. These three parts form a triad that describe key aspects of any methodology

framework. The process component describes a structure of business processes or activities that

a service provisioning organization should follow in order to successfully analyze, plan, design,

provision, and run services.

The organization component describes the roles and responsibilities, project profiles, and funding

models recommended in order to successfully support the service lifecycle [18].

The Architecture component provides the detailed description of the various views, models and

other elements used and created during the execution of the method and how they relate to one

another.

Figure 3.1 SAE SOA reference framework [18]

The architecture component includes five views – Business, specification, Implementation,

Deployment, and Technology.

These views comprise a consistent level of abstraction for deliverable artifacts that relate to

distinct set of stakeholders.

This provides an effective mechanism for grouping related SOA best practices based on a

particular part of the enterprise under study. Each view defines and clusters together the standards,

patterns, techniques, deliverables, models, and polices that apply to appropriate view as illustrated

in Figure 3.1.

www.manaraa.com

Chapter 3 Related Works

24

Table 3.1 SAE View Descriptions [18]

Table 3.1 provides a first level of detail on each of the five views:

The business view includes best practices such as policies, patterns, and techniques that provide

guidance as to how to capture knowledge about the business.

The specification view comprises the artifacts and models required by architects to specify the

functional and non-functional requirements of software solutions and services as well as the

architectural dependencies between them. This view is meant to be independent of any particular

platform such as application server, operating system or even enterprise service bus.

View Purpose Primary Roles(s) Enterprise Layer

Business To understand and analyze business needs

and how the business operates in terms of

goals and objectives, organizational structure,

processes, information, etc.

Business Architect Business

Specification To plan and specify software services from a

platform independent perspective.It provides

a means of thinking in depth about logical

services and their interrelationships.

Service Architect Software

Implementation To package services into automation units,

identify dependencies between the

automation units, and to determine the

implementation constraints that will govern

the internal design and deployment of these

units

Service Architect,

Software Designer

Software

Deployment To explore alternative and finally capture

deployment choices for run time services. To

map implementation view services to

deployment units and to construct an

optimum configuration on the computing

infrastructure.

Infrastructure

Architect,

Operations

Management

Software/Infrastructure

Technology To ensures technologies are in place to enable

software lifecycle in all levels from planning

through specifications, design and execution

and retirement.

Infrastructure

Architect,

Operations

Management

Infrastructure

www.manaraa.com

Chapter 3 Related Works

25

The specifications view artifacts are: service specification architecture, service dependency diagram,

service orchestration diagram, service information model, service description, service specification,

and security specification.

The primary artifact of the implementation view is the service implementation architecture that

captures the structure of the automation units that implement the services identified in the service

specification architecture.

The deployment view provides the mapping of automation units onto nodes or services platforms

allowing services or solution architects to communicate with infrastructure architects about how

services will run in the production environment.

This ensures that services required for runtime will be available on the platforms that will run the

automation units. Second it provides a mechanism for these same service and infrastructure

architects to analyse the processing and bandwidth capacity required for each segment of the

infrastructure.

The technology view is the last piece in the overall enterprice layering. The purpose of this view is

to nail down exactly what the network will look like, polices that will govern service operations and

to ensure that the technology base required by the services running in the production environment

have all the pieces require.

b. Discussion

The architecture component of the SAE reference framework is been structured into views and

best practices in order to support a number of key architectural principles.

The most critical of these principles is separation of concerns. By dividing the structure into

views, architects can separate business concerns from software concerns, logical concerns from

technology concerns and so on. This separation in addition to allowing the architect to focus on a

particular concern without having to remember all the others, also improves the maintainability

by “chunking” the architecture into manageable pieces.

Adaption of SAE reference framework is an evolutionary process. Techniques, and particularly

patterns and policies will evolve with SOA maturity. In the early stages many polices will

probably be advisory but with more experience they may well become strongly recommended or

mandatory.

The SAE framework provides an easy way in integrability between framework components, since

the architecture is defined well, and the clear sequence in framework adaption activities can

www.manaraa.com

Chapter 3 Related Works

26

support the agility in transformation process. This methodology can be used as a base model in

designing the Palestinian e-Government cloud framework.

3.1.2. Service-Oriented Analysis and Design (SOAD)

A service oriented analysis and design (SOAD) process has been defined as shown in Figure 3.2

for developing Saas based applications in an enterprise context [19]. The basic concepts of

Service-Oriented Architectures (SOAs) and Web services are becoming part of our everyday

language and recognized as a suitable architectural style for crafting modern enterprise

applications. In this context, the underlying issues of: what makes good services are becoming

increasingly critical for ensuring the successful implementation of SOAs [20].

Figure 3.2 SOAD Architecture and Components[20]

a. SOAD architecture and components

The definition of SOAD model contains the following four phases wherein with each phase, the

development of the design gets tuned up and the final formalized structure can be derived. [21].

Model: This phase collects the requirement specifications from the consumer and models the

suitable services with each requirement specified. After the accumulation of requirements and

modelling, the simulation of the complete structure can be prepared in order to get the basic idea of

the architecture.

Assemble: Once the requirement model is prepared, then corresponding services which performs

the required task are identified and testing the same can be performed. A locator can perform the

task of service identification and the verification of the same. This phase is preparing the full proof

model of services with verification and testing.

Deploy

Assemble

Model

Integrate people process, integrate information

Discover and test component

Gather requirements and simulate design

Manage Manage application and service, polices and

profiles

www.manaraa.com

Chapter 3 Related Works

27

Deploy: The deployment phase describes the integrability of various security parameters with the

required specifications. The integrability of services in a specific process and the application

environment is possible only when they are compatible with each other and the security parameters

should be embedded with each service. The federated interface can be used to provide the

connectivity among the similar user groups.

Manage: This phase is enabling the architecture to manage the processes and the individual services

in the application environment. The management of the performance level is an important feature

of the proposed architecture in order to provide sustainability to the process execution. This helps

the workflow to perform the activity successfully without any further verifications or the analysis.

Any degradation in the performance level is supplemented by another service with the same

specifications.

With the SOAD framework, the services present in the proposed model can be classified into the

following categories.

 Educational services: Supports the educational purposes. The services like form filling, mark

sheet generation can be classified into this category.

 Management services: These are the services which helps the system to maintain the service

collaboration within the application environment which also takes care of the security

maintenance. Example: SAS, AAA services.

 Process services: These services help the system to have a correlation and collaboration among

the services. This enables the smooth process choreography. Example: Orchestration services,

service brokers

 Interaction services: These services are enabling the interaction among various services and

processes in a single working environment. Example: Interfaces & federated services.

b. Discussion

The SOAD model is a simple architecture which contains the components in every level in a

transparent way. The structure can be prepared on runtime by choosing the services independently

and combined to produce the complete system architecture.

Any addition and deletion of services within the process choreography can be performed

independently without affecting the existing working environment.

www.manaraa.com

Chapter 3 Related Works

28

In a SOA, all services follow the same design philosophy (which is articulated through patterns and

templates) and interaction patterns; the underlying architectural style can easily be identified which

leads to a good integrability services.

The development of the services and service consumers requires only basic programming language

skills in addition to domain knowledge; middleware expertise is only required for a few specialists,

that in an ideal world, work for tool and runtime vendors, and not for the companies crafting

enterprise applications as SOAs.

3.1.3. Service Oriented Modelling and Architecture (SOMA)

Service Oriented Modelling and Architecture, referred to as SOMA, is a method proposed by a

group of IBM architects and members of prestigious SOA-related organizations, to guide the

adoption of SOA within a company. In this process, several stages could be identified: analysis,

design, implementation and deployment of services. For each of these, SOMA specifies techniques

to be used, roles and a work breakdown structure (WBS) consisting of tasks, their specific input

and output, and several rules regarding their execution [22].

The method is based on a fractal software development model which principles influence the

manner of using SOMA:

 The seven phases consisting of several capabilities are applied incrementally and iteratively.

Therefore, managing risks becomes a continuous process based on the analysis of the service-

dependencies in each iteration.

 The capabilities are applied in a similar way, independent of the scope (enterprise, business

unit, project) but not identical as each scope has its own characteristics.

As previously mentioned the rules of executing the phases are dictated by the fractal model. Two

of the phases, Business modeling and transformation and Solution management, are related to the

preparation stage in adopting service oriented architecture. Their output is the creation of enterprise

architecture documentation, solution templates, transformation roadmap and project management

planning. The other phases, Identification, Specification, Realization and Implementation, have as

final result the instantiation of the SOA Reference Framework. As phases are applied, their

produced deliverables are used for populating SOA reference framework. This main deliverable

offers several advantages.

a. SOMA architecture and components

At the heart of SOMA is the identification and specification of services, components, and process

flows. At a high level, SOMA is a three-phased approach to identify, specify, and realize services as

www.manaraa.com

Chapter 3 Related Works

29

shown in Figure 3.3, components, and flows (typically, choreography of services). The first phase

is that of service identification, where various techniques are used to identify an exhaustive list of

candidate services. The second phase is that of service specification, in which a detailed design of

services and components is completed. The realization phase focuses on making architectural

decisions, justifying the most prudent approach to implement the services [23].

One of the main outputs of the SOMA method is a service model. It is recommended that a service

model constitute of the following artifacts about services [22]:

 Service portfolio—List of all the enterprise services

 Service hierarchy—A categorization of services into service groups

 Service exposure—An analysis and rationalization of which services should be exposed and

which should not

 Service dependencies—Representing the dependencies of services on other services

 Service composition—How services take part in compositions to realize business process

flows

 Service NFRs—The nonfunctional requirements that a service must comply with

 State management—The various types of states that a service should maintain and implement

 Realization decisions—Architectural decisions, for each service, around the most justified

mechanism to implement the service

Identification

Specification

Realization

Domain

decomposition

Goal-service modeling
Existing system

analysis

Component flow

specification

Information

specification

Service flow

specification

Service allocation to

components
Component layer

Figure 3.3 SOMA Architecture and Components [22]

www.manaraa.com

Chapter 3 Related Works

30

b. Discussion

SOMA provides specific guidance on the analysis and design activities for determining the three

fundamental aspects of a service-oriented architecture: services, flows, and components that realize

the services. The limitation in SOMA framework are includes: the lack of the software lifecycle

development, and there are no clear relation between components. This limitation will reduce the

integrability and make the agility in development weak.

3.1.4. Service Migration and Reuse Technique (SMART)

The Service-Oriented Migration and Reuse Technique (SMART) [24] was developed to assist

organizations in analysing legacy capabilities for use as services in an SOA.

SMART gathers a wide range of information about legacy components, the target SOA, and

potential services to produce a service migration strategy as its primary product. However, SMART

also produces other outputs that are useful to an organization whether or not it decides on migration.

SMART input (from documentation and interviews) and output are depicted in Figure 3.4.

a. SMART architecture and components

SMART consists of five major components, each divided into several tasks. The components and

generalized process and information flows of SMART are depicted in Figure 3.5. However, the

number of artifacts considered, the time required, and the specific activities of a given application

of SMART depend on previous activities and expectations of the requesting organization. For

example, if the requesting organization has specific legacy components in mind for migration,

SMART activities will be focused on those components.

SMART software lifecycle consists of several activities as shown in Figure 3.5, Information-

gathering activities for the first three activities are directed by the Service Migration Interview

Legacy system

Architecture

Design

Code

Cost/effort

SMART

Stakeholder

Characteristics

Migration Issues

Service Table

SOA

Migration

Service Migration

Figure 3.4 SMART Architecture and Components [24]

www.manaraa.com

Chapter 3 Related Works

31

Guide (SMIG). The SMIG contains questions that directly address the gap between the existing

and target architecture, design, and code, as well as questions concerning issues that must be

addressed in service migration efforts. Use of the SMIG assures broad and consistent coverage of

the factors that influence the cost, effort, and risk involved in migration to services.

It is not necessary for the team to complete all data gathering during these initial activities.

Additional opportunities are provided during the Analysis activity.

Figure 3.5 SMART Activities [24]

b. Discussions

As introduced previously, the SMART framework consists of several components which used for

transforming legacy applications to software as a service, these components interacts as input and

output to the model, and the result will be a full transformed application.

The software lifecycle is described as several activities and tasks, these activities explained well

and make the transformation process agile.

3.1.5. Discussions and Conclusions

www.manaraa.com

Chapter 3 Related Works

32

As mentioned previously, there are many process models used for service engineering like SAE,

Service Architecture Engineering, SOAD, Service-Oriented Analysis and Design, SOMA,

Service-Oriented Modelling and Architecture , and SMART (Service Migration and Reuse

Technique).

Some of these models interested in the service lifecycle, and the others introduces a full solution

for service transformation starting from analysis to implementation.

The architecture component of the SAE reference framework is been structured into views and

best practices in order to support a number of key architectural principles.

Adaption of SAE reference framework is an evolutionary process. Techniques, and particularly

patterns and policies will evolve with SOA maturity. In the early stages many polices will probably

be advisory but with more experience they may well become strongly recommended or mandatory.

The SAE framework provides an easy way in integrability between framework components, since

the architecture is defined well. The Reference framework triad – Organization, Process, and

Architecture describe key aspects of any methodology framework. The process component

describes a structure of business processes or activities that a service provisioning organization

should follow in order to successfully analyze, plan, design, provision, and run services [18].

Service Migration and Reuse Technique (SMART) [24] consists of five major components, each

divided into several tasks. However, the number of artifacts considered, the time required, and the

specific activities of a given application of SMART depend on previous activities and expectations

of the requesting organization. For example, if the requesting organization has specific legacy

components in mind for migration, SMART activities will be focused on those components.

In Service Oriented Modelling and Architecture , referred to as SOMA[22], several components

could be identified: analysis, design, implementation and deployment of services. For each of

these, SOMA specifies techniques to be used, roles and a work breakdown structure (WBS)

consisting of tasks, their specific input and output, and several rules regarding their execution.

Service-oriented analysis and design SOAD [21] notation and process remain to be defined in

detail, components such as service conceptualization (or identification), service categorization and

aggregation, policies and aspects, meet-in-the-middle process, semantic brokering, and service

harvesting (for reuse) can already be identified.

SOAD will require enhancements to existing software engineering methods, further improving

their usability and applicability to enterprise application development projects. Related best

practices and patterns will evolve over time.

Table 3.2 discusses these service models compared and listing properties and advantages.

Table 3.2 Service Engineering Model Properties.

www.manaraa.com

Chapter 3 Related Works

33

Criteria SAE SOAD SOMA SMART

Classifications of

the framework

components

depending on its

jobs

Classified to 3

main

components,

each component

classified to

views

Classified to 3 layers and

each layer classified to

components

Classified to 3

types of service

classifications

The framework

classified to input and

output components.

Service architecture

including taxonomy,

classification and

policies

The SOA view

discusses the

service

architecture in

detailed steps.

Service layer discusses

the service architecture.

The seven phases

consisting of

several

capabilities

In the input component

the service layer is

classified

Process lifecycle In the process

component the

framework

discuss the

process

lifecycle.

Meet-in-the-middle

processes

The bottom-up approach

tends to lead to poor

business-service

abstractions in case the

design is dictated by the

existing IT environment,

rather than existing and

future business needs

The seven phases

consisting of

several

capabilities are

applied

incrementally and

iteratively

The SMART activities

list the process

lifecycle.

Project profile,

polices, and

monitoring

The

organization

component list

the project

profile and

monitoring

models

Service harvesting and

knowledge brokering

model

The final phase,

Deployment,

monitoring and

management,

could trigger

various changes in

the services

landscape

Develop Migration

Strategy discusses

project profiles

3.2. Impacts of Cloud on Software Engineering

3.2.1. Federal Cloud Computing Strategy

www.manaraa.com

Chapter 3 Related Works

34

Cloud computing describes a broad movement to treat IT services as a commodity with the ability

to dynamically increase or decrease capacity to match usage needs. By leveraging shared

infrastructure and economies of scale, cloud computing present's Federal leadership with a

compelling business model. It allows users to control the computing services they access, while

sharing the investment in the underlying IT resources among consumers [25].

a. IT will be simpler and more productive

Cloud computing also provides an indirect productivity benefit to all services in the IT stack. For

example, less effort will be required to stand up and develop software testing environments,

enabling application development teams to integrate and test frequently in production-

representative environments at a fraction of the cost of providing this infrastructure separately.

b. Agility improvements will make services more responsive

The impact of cloud computing will be far more than economic. Cloud computing will also allow

agencies to improve services and respond to changing needs and regulations much more quickly.

With traditional infrastructure, IT service reliability is strongly dependent upon an organization’s

ability to predict service demand, which is not always possible.

Cloud computing provides an important option for agencies in meeting short-term computing;

agencies need not invest in infrastructure in cases where service is needed for a limited period of

time.

c. Services will be more scalable

With a larger pool of resources to draw from, individual cloud services are unlikely to encounter

capacity constraints. As a result, government services would be able to more rapidly increase

capacity and avoid service outages. Given appropriate service level agreements and governance to

ensure overall capacity is met, cloud computing will make the government’s IT investments less

sensitive to the uncertainty in demand forecasts for individual programs, which frequently emerge

rapidly in response to national program needs which cannot be foreseen in the early stages of the

Federal budget cycle.

d. Decision Framework for Cloud transformation

The broad scope and size of the cloud transformation will require a meaningful shift in how

government organizations think of IT. Organizations that previously thought of IT as an investment

www.manaraa.com

Chapter 3 Related Works

35

in locally owned and operated applications, servers, and networks will now need to think of IT in

terms of services, commoditized computing resources, agile capacity provisioning tools, and their

enabling effect for citizens. This new way of thinking will have a broad impact across the entire IT

service lifecycle – from capability inception through delivery and operations. The following

structured framework presents a strategic perspective for agencies in terms of thinking about and

planning for cloud transformation [25].

Figure 3.7 Decision Framework for Cloud transformation [25]

e. Selecting services to move to the cloud

Successful organizations carefully consider their broad IT portfolios and create roadmaps for cloud

deployment and transformation. These roadmaps prioritize services that have high expected value

and high readiness to maximize benefits received and minimize delivery risk.

Defining exactly which cloud services an organization intends to provide or consume is a

fundamental initiation phase activity in developing an agency roadmap.

f. Provisioning cloud services effectively

To effectively provision selected IT services, agencies will need to rethink their processes as

provisioning services rather than simply contracting assets. Contracts that previously focused on

metrics such as number of servers and network bandwidth now should focus on the quality of

service fulfillment.

www.manaraa.com

Chapter 3 Related Works

36

Aggregate demand: When considering “commodity” and common IT services, agencies should

pool their purchasing power by aggregating demand to the greatest extent possible before

transforming services to the cloud. Where appropriate, demand should be aggregated at the

departmental level and as part of the government-wide shared services initiatives such as

government-wide cloud-based email.

Integrate services: Agencies should ensure that the provided IT services are effectively integrated

into their wider application portfolio. In some cases, technical experts may be required to evaluate

architectural compatibility of the provided cloud service and other critical applications. Rather

than a one-time event, this principle should be followed over time to guarantee that systems remain

interoperable as individual IT services evolve within the portfolio. Business process change may

similarly be required to properly integrate the systems.

Contract effectively: Agencies should also ensure that their contracts with cloud service providers

set the service up for success. Agencies should minimize the risk of vendor lock-in, for instance,

to ensure portability and encourage competition among providers. Agencies should include

explicit service level agreements (SLAs) for security, continuity of operations, and service quality

that meet their individual needs. Agencies should include a contractual clause enabling third

parties to assess security controls of cloud providers [25].

Realize value: Agencies should take steps during transformation to ensure that they fully realize

the expected value. From an efficiency standpoint, legacy applications and servers should be shut

down and decommissioned or repurposed. Data center real estate used to support these systems

should be closed down or used to support higher value-add activities. Where possible, staff

supporting these systems should be trained and re-deployed to higher-value activities. From an

agility and innovation standpoint, processes and capabilities may also need to be refined in order

to fully capture the value of the investment.

g. Discussion

This Federal Cloud Computing Strategy is designed to articulate the benefits, considerations, and

trade-offs of cloud computing, It provide a decision framework to support agencies in

transformation towards cloud computing, It also highlight cloud computing implementation

resources, identify federal government activities and roles and responsibilities for analysing cloud

adoption.

Following the publication of this strategy, each agency will re-evaluate its technology sourcing

strategy to include consideration and application of cloud computing solutions.

www.manaraa.com

Chapter 3 Related Works

37

3.2.2. Analytical Study of Agile Methodology with Cloud Computing

Agile development methodologies and Cloud Computing complement each other very well. Cloud

Services take pride in meeting user requirements rapidly.

The agile system of software development aims to break down project requirements into little,

achievable segments. This approach guarantees user feedback on all task of the project [26]

a. Cloud Computing and Agile Development

Cloud computing is the perfect environment for agile development. It lets you get valuable

functionality to your customers quickly, collect instantaneous feedback, and make quick changes

based on that feedback. This rapid development cycle, an inherent benefit of cloud computing,

are impossible to implement in the conventional development model because of the huge cost of

distribution.

b. Advantages of Cloud Computing with Agile Development:

 Shortened development cycle-time of 75%.

 Higher stability of work-loads.

 Higher utilization of work-load that is, developing large-scale, software systems with a

fixed number of developers.

 Higher quality by earlier feedback from the customers.

 Higher flexibility to change of Management and development plans.

 Reduce the cost of moving information between people.

 Place people physically closer.

 Reduce the elapsed time between making a decision to seeing the consequence of that

decision.

 Replace documents with talking in person and at whiteboards.

c. Agile development Lifecycle in Cloud Computing

Agile development methodology attempts to provide a lot of opportunities to assess the direction

of a project during the development lifecycle. This is achieved through regular cadences of work,

well-known as sprints or iterations as shown in Figure 3.8, at the end of which teams must present

a shippable increment of work. Thus by focusing on the repetition of shortened work cycles as

well as the functional product they yield, agile methodology could be explained as “iterative”

www.manaraa.com

Chapter 3 Related Works

38

and “incremental.” In waterfall, development teams just have one chance to get each aspect of a

project right. In an agile paradigm, every aspect of requirements, development, design, etc. is

continually revisited during the lifecycle.

Figure 3.8 Agile Development Lifecycle [26]

3.2.3. Impact of Web 2.0 and Cloud Computing Platform on Software Engineering

Current era of Web 2.0 is enabling new business models for using the semantic web. One such

Business model is leasing out computing platform of hardware and software over the internet to

the tenants and is dubbed as Cloud Computing. The anticipated future trend of computing is

believed to be this cloud computing as it promises a lot of benefits like no capital expenditure,

speed of application deployment, shorter time to market, lower cost of operation and easier

maintenance for the tenants [27].

a. Impact of Cloud Computing on Software Engineering: Challenges

In the rapidly changing computing environment with web services and cloud platform, software

development is going to be very challenging. Software development process will involve

heterogeneous platforms, distributed web services, multiple enterprises geographically dispersed

all over the world.

www.manaraa.com

Chapter 3 Related Works

39

Existing software process models and framework activities are not going to be adequate unless

interaction with cloud providers is included.

Requirements gathering phase so far included customers, users and software engineers. Now it

has to include the cloud providers as well, as they will be supplying the computing infrastructure

and maintain them too. As the cloud providers only will know the size, architectural details,

virtualization strategy and resource utilization of the infrastructure, planning and design phases

of software development also have to include the cloud providers. The cloud providers can help

in answering these questions on: How many developers are needed, Component Reuse, Cost

estimation, Schedule Estimation, Risk Management, Configuration Management, Change

Management, and Quality Assurance [27].

Because of the component reuse of web services the size of the software in number of kilo- lines

of code (KLOC) or number of function points (FP) to be newly developed by the software

engineer will reduce but complexity of the project will increase many folds because of lack of

documentations of implementation details of web services and their integrability requirements.

Only description that will be available online is the metadata information of the web services to

be processed by the computers automatically.

Only coding and testing phases can be done independently by the software engineers. Coding

and testing can be done on the cloud platform which is a huge benefit as everybody will have

easy access to the software being built. This will reduce the cost and time for testing and

validation.

But software developers have to use the web services and open-source software freely available

from the cloud instead of procuring them. Software developers should have more expertise in

building software from readily available components than writing it all and building a monolithic

application. Refactoring of existing application is required to best utilize the cloud infrastructure

architecture in a cost effective way.

Maintenance phase also should include the cloud providers. There is a complete shift of

responsibility of maintenance of the infrastructure from software developers to cloud providers.

Now because of the involvement of the cloud provider the customer has to sign contract with

them as well so that the “Software Engineering code of ethics” are not violated by the cloud

provider. In addition, protection and security of the data is of utmost importance which is under

the jurisdiction of the cloud provider now [27].

Now we analyze how difficult will be the interaction between cloud providers and the software

engineers, The amount of interactions between software engineers and cloud providers will

depend on type of cloud like public, private and hybrid cloud involvements. In private cloud

www.manaraa.com

Chapter 3 Related Works

40

there is more control or self-governance by the customer than in public cloud. Customer should

also consider using private cloud instead of using public cloud to assure availability and

reliability of their high priority applications.

b. Proposed Software Process Model

Innovative software engineering is required to leverage all the benefits of cloud computing and

mitigate its challenges strategically to push forward its advances. [27] Propose an extended version

of Extreme Programming (XP), an agile process model for cloud computing platform and name it

Extreme Cloud Programming Figure 3.10.

Figure 3.9 Extreme Cloud Programming [27]

All the phases like planning, design, construction, testing and deployment need interaction with the

representatives from cloud provider. Resource accounting on cloud platform will be done by the

cloud provider in the requirement gathering phase. Software architecture, software architecture to

hardware architecture mapping, interface design, data types design, cost estimation and schedule

estimation of the project all should be done in collaboration with the cloud provider.

During the construction phase of the application if web services are integrated where many different

enterprises are involved then error should be mitigated with the mediation of the cloud provider.

Maintenance contract with cloud provider will be according to the Quality of Service agreement.

c. Discussion

www.manaraa.com

Chapter 3 Related Works

41

[28] Analyses how cloud computing on the background of Web 2.0 is going to impact the software

engineering process to develop quality software. As the cloud provider is an external entity or third

party, how difficult will be the interaction with them? How to separate the roles of SW engineers

and cloud providers? SW engineering should include framework activities to leverage all the

benefits of cloud computing systematically and strategically, The main thesis was that the prevalent

SW process models should involve the cloud provider in every steps of decision making in software

development lifecycle to make the software project a success.

[28] Focuses on the roles of cloud provider in software development cycle, and not mentioned the

changes made in the model of the software engineering and they did not design a real cloud

transformation framework neither the cloud platform.

3.2.4. Model-Based Migration of Legacy Software Systems to Scalable and Resource-

Efficient Cloud-Based Applications: The CloudMIG Approach

Newly developed enterprise software may easily be designed for utilizing cloud computing

technologies in a Greenfield project. Though, SaaS providers may also consider to grant

responsibility of operation and maintenance tasks to a cloud provider for an already existing

software system. Running established enterprise software on a cloud computing basis usually

involves extensive reengineering activities during the migration [29].

Nevertheless, instead of recreating the functionalities of an established software system from

scratch for being compatible with a selected cloud provider’s environment, a migration enables

the SaaS provider to reuse substantial parts of a system. The number of system parts which might

be migrated is dependent on the weighting of several parameters in a specific migration project.

a. The CloudMIG actitivities

CloudMIG is composed of six activities for migrating an enterprise system to a cloud

environment. It provides model driven generation of considerable parts of the system’s target

architecture. Feedback loops allow for further alignment with the specific cloud environment’s

properties and foster resource efficiency and scalability on an architectural level. Its activities

(A1-A6) are briefly described in the following including the involved models.

Activity A1 - Extraction

www.manaraa.com

Chapter 3 Related Works

42

The knowledge about the internal structure is often incomplete, erroneous, or even missing. As

CloudMIG utilizes a model transformation during generation of its target architecture, a

representation of the software system’s actual architecture has to be available first. Concerning

this issue, an appropriate model is extracted by means of a software architecture reconstruction

methodology.

CloudMIG includes the extraction of an established software system’s utilization model acting

as a starting point. The utilization model includes statistical properties concerning user behavior

like service invocation rates over time or average submitted datagram sizes per request.

 Activity A2 - Selection

Common properties of different cloud environments are described in a cloud environment meta-

model. Selecting a cloud provider specific environment as a target platform for the migration

activities therefore implies the selection of a specific instance of this meta-model. For example,

this meta-model comprises entities like VM instances or worker threads for IaaS and PaaS-based

cloud environments, respectively. As a result, for every cloud environment which shall be

targeted with CloudMIG a corresponding meta-model instance has to be created once

beforehand. Transformation rules define possible relationships to the architecture metamodel.

Activity A3 - Generation

The generation activity produces three artefacts, namely a target architecture, a mapping model,

and a model characterizing the target architecture’s violations of the cloud environment

constraints.

Activity A4 - Adaptation

The activity A4 allows the reengineer to adjust the target architecture manually towards case-

specific requirements that could not be fulfilled during generation activity A3.

Activity A5 - Evaluation

For being able to judge about the produced target architecture and the configured capacity

management strategy, A5 evaluates the outcomes of the activities A3 and A4. The evaluation

involves static and dynamic analyses of the target architecture.

Activity A6 - Transformation

www.manaraa.com

Chapter 3 Related Works

43

This activity comprises the actual transformation of the enterprise system from the generated

and improved target architecture to the aimed cloud environment. No further support for

actually accomplishing the implementation is planned at this time.

3.3. Discussions and Conclusions

As presented previously the cloud computing development has an important issue in software

engineering, transforming applications to cloud needs a good software development lifecycle

process, the architecture of cloud environment needs to be structured well.

Most of the presented researches presented the cloud architecture but most of them did not discuss

the cloud components.

The architecture of the cloud presented in these researches has been identified depending on the

specific situation, and could not be adapted in other situation.

The researches that presented the cloud architecture did not presented a transformation lifecycle,

neither mention the software engineering model for development in cloud.

Finally, in this research we will present a cloud computing framework for transforming Palestinian

e-government applications, define its components, design a software model, and define

transforming lifecycle.

www.manaraa.com

Chapter 4 Current Palestinian cloud environment

44

Chapter 4 Current Palestinian Cloud Environment

Currently there are multiple of software and applications developed for the Palestinian e-Government,

some of these applications are hosted as standalone applications in the cloud and does not need to be

transformed to the cloud, but most of these applications are need to be transformed into cloud

application.

Next we introduce the current Palestinian cloud infrastructure according to the government computer

centre system manager, the essential characteristics, the service models, the deployment models, and

we introduce the current software engineering model and discuss the model applicability for

applications transformation to cloud.

4.1. Palestinian Cloud Infrastructure

According to the structure of the Government Computer Centre (GCC), the current infrastructure of

the Palestinian e-Government cloud is installed and the applications are ready for transforming to the

new cloud environment. The cloud infrastructure as shown in Figure 4.1 consists of a main data centre

that is composed of two clustered physical servers with a shared storage.

The current e-Government applications are hosted on the virtual machines and benefits from the cloud

infrastructure as discussed in Section 4.2. This cloud model is composed of three service models, and

four deployment models.

4.1.1. Service Models

a. Software as a Service (SaaS). The capability provided to the consumer is to use the provider’s

applications running on a cloud infrastructure. The applications are accessible from various client

devices through either a thin client interface, such as a web browser (e.g., web-based email), or a

program interface. The consumer does not manage or control the underlying cloud infrastructure

including network, servers, operating systems, storage, or even individual application capabilities,

with the possible exception of limited user-specific application configuration settings.

Currently there are various applications provided to the customers and hosted on the government

cloud, these applications are provided as software as a service.

As a case the government email system as shown in Figure 4.2 provided as a software as a service

and serves more than 20 ministries and institutes. Every ministry account has access to the email

system, manage, monitor, and use the email system as it owns the system.

www.manaraa.com

Chapter 4 Current Palestinian cloud environment

45

The government computer centre has the full responsibility for installing the infrastructure, manage

the email's protocols, securing email sending and receiving, and the email backup and storage. The

ministry email account has the rights to create special email domain accounts or use the global

government domain (.gov.ps).

b. Platform as a Service (PaaS). The capability provided to the consumer is to deploy onto the cloud

infrastructure consumer-created or acquired applications created using programming languages,

libraries, services, and tools supported by the provider. The consumer does not manage or control

PaaS

SaaS

MTIT MOF Diwan others

The government email system

Cloud infrastructure

Shared CPU Shared Memory

VM2 VMn

Physical server 1 Physical server 2

Cloud Applications

Figure 4.2 The Government Email System (Saas Case)

Shared CPU

VM2 VM3 VM1 VMn

Shared Memory

Shared storage

VM1 VM3

IaaS

Figure 4.1 The Palestinian Cloud Infrastructure

www.manaraa.com

Chapter 4 Current Palestinian cloud environment

46

the underlying cloud infrastructure including network, servers, operating systems, or storage, but

has control over the deployed applications and possibly configuration settings for the application-

hosting environment.

Currently there are various ministries and institutes benefit from the cloud infrastructure as platform

as a service, the Palestinian cloud provides platform services such as php application server, mysql

database, oracle database, and provides interface to manage the platform.

As a case the ministry of health develop its own applications and services using the platform of the

government cloud. According to the general manager of the information technology centre in the

ministry of Health (MOH), the Pharmacy management system is developed in MOH by MOH

developers, and hosted on the e-Government cloud environment to benefit from the infrastructure

provided by the cloud environment such as the database system, the development environment, the

programming platform as shown in Figure 4.3.

c. Infrastructure as a Service (IaaS). The capability provided to the consumer is to provision

processing, storage, networks, and other fundamental computing resources where the consumer is

able to deploy and run arbitrary software, which can include operating systems and applications.

The consumer does not manage or control the underlying cloud infrastructure but has control over

operating systems, storage, and deployed applications; and possibly limited control of select

networking components (e.g., host firewalls). Currently there are various ministries and institutes

benefit from cloud infrastructure as infrastructure as a service.

php mysql oracle …….

The pharmacy management system

Cloud infrastructure

Figure 4.3 The Pharmacy System (Paas Case) Figure 4.3 The Pharmacy System (Paas Case)

www.manaraa.com

Chapter 4 Current Palestinian cloud environment

47

As a case the ministry of interior (MOI) benefit from the cloud infrastructure and install their

operating systems and manage their applications as if it is standalone. e.g the MOI webserver is a

virtual server hosted in the e-Government cloud to benefit from the infrastructure of the cloud.

4.1.2. Deployment Model

Based on the well-known deployment models introduced in section 2.1.2, and according to the

policies and the Government Computer Centre, the deployed model in the e-Government cloud is

the Community cloud. In the deployed model, the cloud infrastructure is shared by several

ministries and institutes with a government policy.

The community deployment model increases the integrability in cloud applications, and the data

integrity as various ministries requiring access to the government central database.

4.2. Current Palestinian e-Government Software Engineering Model

Refer to section 3.1, the transformation to the cloud needs a well-defined software development

lifecycle, as the transformation framework has a main component for software development lifecycle.

The current software engineering model adapted in the Palestinian government is a combination of

the waterfall model and the iterative model according to the manager of web applications

development, The main functionalities of this model is to document the user and system requirements,

in addition to clarify the system design flow during development cycles, There is a system analyst

who is responsible for preparing the system requirements specification document, and coordinating

the development cycles between divisions, finally an SRS template is designed to be used in defining

system requirements specifications.

Figure 4.3 shows the development cycle applied in the e-Government, the applied model is designed

base on the e-government application development needs, but doesn't take into consideration the

cloud transformation in addition to cons introduced in section 4.2.1.

www.manaraa.com

Chapter 4 Current Palestinian cloud environment

48

Figure 4.4 The Palestinian e-Government Development Process Model [The manager of web applications
development division]

As shown in Figure 4.4 (the manager of web applications development division) the software

development lifecycle consists of six phases, user requirements gathering, system analysis, database

design, application design, e-services design, and deployment phase.

The tasks associated to each phase are separated depending on the divisions of the e-Government

architecture:

1- Users requirements gathering:

The system analysis division is responsible for meeting stakeholders and gathering the user

requirements. The system analyst write down everything the user interested in, taking in

consideration the user experience.

This task take too much time in some cases because of the issues in coordinating meetings with

customers and stakeholders.

2- System analysis and SRS document creation

After the system analyst gather the user requirements, he will analyse the system and prepare the

SRS document. The SRS document contains the user requirements and the system specifications

presented using user cases and charts.

• system
analyst

user requirements
gathering

• system
analyst

system analysis
and SRS document

creation

•database
administrator

Database design

• developerapplication design

• developere-service design

• cloud
provider

publish and
deployment

www.manaraa.com

Chapter 4 Current Palestinian cloud environment

49

3- Database design

After the SRS document is created, the document will be delivered to the database division, and the

database designer will design and create the database schema and tables, create required procedures

and assign required privileges.

After database is created the system analyst will be inform to validate the design and to coordinate

delivering the database to the web application division.

4- Application design

The web application division will receive the SRS document and the database to start developing

the system. This step is critical as the web developer needs to return to the system analyst for each

step, and the requirements changes needs to be discussed well.

5- E-service design

The e-service division in Palestinian e-Government is separated from the applications division

because the e-service has special cases due to the concern of publishing e-services and the different

stakeholders.

The e-services developer will receive the SRS document and start to develop the e-service and

coordinate with the system analyst and the web application developer.

6- Publish and deployment

As shown in Figure 4.3 the deployment phase is the latest step in developing applications but

actually it starts during the web application developing, when the main interface of the system are

ready to be presented.

 4.2.1. Palestinian e-Government Software Engineering Model Pros and Cons

As presented previously, the Palestinian e-Government software engineering model consists of

six phases, these phases' delivers the milestones using the waterfall model approach, and

depending on requirements changes the requirements updated during development using iterative

model approach.

a. Model pros:

First, the staged development cycle enforces discipline: every phase has a defined start and end

point. The emphasis on requirements and design before writing a single line of code ensures

minimal wastage of time and effort and reduces the risk of schedule slippage, or of customer

expectations not being met.

www.manaraa.com

Chapter 4 Current Palestinian cloud environment

50

Getting the requirements and design out of the way first also improves quality; it's much easier to

catch and correct possible flaws at the design stage than at the testing stage, after all the components

have been integrated and tracking down specific errors is more complex. Finally, because the first

two phases end in the production of a formal specification, the model can aid efficient knowledge

transfer when team members are dispersed in different locations.

b. Model cons:

The most drawback of this model is that the customers don't really know what they want up-front;

rather, what they want emerges out of repeated two-way interactions over the course of the project.

In this situation, the model, with its emphasis on up-front requirements capture and design, is seen

as somewhat unrealistic and unsuitable for the vagaries of the real world. Further, given the

uncertain nature of customer needs, estimating time and costs with any degree of accuracy (as the

model suggests) is often extremely difficult. In general, therefore, the model is recommended for

use only in projects which are relatively stable and where customer needs can be clearly identified

at an early stage and this is impossible especially in the e-Government projects.

Another drawback revolves around the model's implicit assumption that designs can be feasibly

translated into real products; this sometimes runs into roadblocks when developers actually begin

implementation. Often, designs that look feasible on paper turn out to be expensive or difficult in

practice, requiring a re-design and hence destroying the clear distinctions between phases of the

model which will reduce the agility in the development.

Also this model suffer from the lack of agility, when the user requirements changed or additional

features added to the application, it will be difficult to redesign the required components and the

changes will take too much time.

In addition to the previous issues, this model is not suitable for transforming applications to the

cloud because none of its phases take in consideration the cloud environment and it’s requirements,

so there are various software engineering issues that have to be addressed when the e-government

cloud becomes the target deployment environment, These issues include the integrability between

cloud components, and reused components of cloud applications, designing the database and

relation to the SOA framework, designing system components, components hosted in cloud

environment, customizing general purposes applications , deployment application in cloud

environment, configuration management , schedule estimation, and cloud based applications

maintenance [2].

Software development cycle of the cloud applications transformation may be affected due to the

hosting on the e-government cloud environment, since cloud development is different and poses its

www.manaraa.com

Chapter 4 Current Palestinian cloud environment

51

own challenges to the development team, so we need to design a software development lifecycle

component in the e-Government cloud framework.

4.3. Conclusion

Software development lifecycle has great challenges in adopting applications in cloud based

environment, software development process will involve heterogeneous platforms, distributed web

services, multiple enterprises geographically dispersed, while existing software process models and

framework activities are not going to be adequate unless considering the cloud architecture and the

interaction between its components to affect software development process.

The acceleration in the pace of software development in the Palestinian e-Government shows a

critical need for a software development model to make the development easy and faster, and to be

used for transforming applications to the cloud, since the current software development model suffer

from the lack of agility and late in application development.

In addition to the previous issues, the integrability process between the applications become more

complex due to the lack of integrability between these applications, the lack of integrative

environment.

Next we introduce the proposed transformation framework, and discusses how the cloud

transformation framework would overcome these issues and limitations.

www.manaraa.com

Chapter 5 The Palestinian e-Government Cloud Applications Transformation Framework

52

Chapter 5 The Palestinian e-Government Cloud Applications

Transformation Framework

The Palestinian transformation framework will take into consideration the agility in development

and the integrability between applications.

To achieve these goals we will apply the following properties in the proposed framework and check

their suitability to achieve our goals:

 Classifications of the framework components depending on their jobs.

 Service architecture including taxonomy, classification and policies.

 Process lifecycle.

 Project profile, polices, knowledge base, and monitoring.

 Customer involvement in all framework component implementation.

Transforming applications to the cloud is not a deployment action, it is a full lifecycle solution from

analysis through implementation to retirement.

As introduced in Chapter 4, the Palestinian e-Government applications developments has its special

concerns which include:

 The lack of software engineering model for applications transformation to cloud.

 The geographically distributed government institutes, necessitate transforming applications to

cloud and to introduce them as Saas.

 The integrability between government application and services also necessitate transforming

applications to cloud and transforming application’s functionality into services.

The proposed framework as shown in Figure 5.1 is divided into components, each component

consist of multiple models, and every model has its tasks and functionalities.

www.manaraa.com

Chapter 5 The Palestinian e-Government Cloud Applications Transformation Framework

53

5.1. Application Profile

The application profile component describes the project profile and characteristics, the monitoring

functionalities, and the knowledge base.

5.1.1. Project Profile

In project profile component, the analyst simplified a description of the application, in addition to

define the purpose and ownership of the project, a first estimation of activities and functions of the

project.

Certain criteria, such as service-level agreements (SLAs), data portability, and long-term costs, must

be carefully evaluated when considering a SaaS deployment.

SLAs: The SaaS government provider should provide a SLA for application overall availability,

scalability, and performance, as well as provide clear polices and guidelines for application

maintenance and use. The Palestinian e-Government publishes the policies concerns the agreements

Saas architecture
Specifications

Application Profile
Project profile Monitoring Knowledge

Process SLCD
Analysis Plan Assessment

Application / service

Realization

Cloud application

Cloud infrastructure

Figure 5.1 The Proposed Palestinian e-Government Cloud Transformation Framework

www.manaraa.com

Chapter 5 The Palestinian e-Government Cloud Applications Transformation Framework

54

of using the e-Government application, service consumers has to sign the terms of use agreement,

agree to use the service, and agree to provide the service provider with any information required.

SLA is applied in the e-Government but it is not detailed here because it need additional related issues

such as legislative, council of ministers, and ministry of justice.

Data portability: The SaaS government provider should provide a way to allow other government

institutions to own and control their application data. SaaS customers should have the ability to export

all application data that belongs to them, in a format that can be easily parsed and migrated to other

internal or external applications.

Security: The SaaS application can contain sensitive corporate data when stored on the SaaS

provider’s infrastructure. You should require transparency in the service provider’s security policies

to be able to determine whether adequate security is provided, based on the nature of application data.

5.1.2. Monitoring

This component will be responsible for all the activities related to the monitoring of the application

process and services function.

Monitoring is used to measure and collect real usage data of an application before it is transformed.

This data can help size the application deployment in a cloud. Ideally, application data should be

collected for at least 10 to 15 days to allow capture of variances in daily and weekly usage patterns.

The following data should be collected:

 CPU usage

 Memory usage

 Storage data such as throughput, latency, and input/output operations per second (IOPS)

 Network data such as throughput, connections per second, and dropped connections.

 Interaction with other applications and services to study and analyse the integrability of the

application.

In addition to these statistics, it is also important to profile user activity, such as the total number of

connected users, request and transaction rates, and request latencies. The usage data can also be used

to build automated tests for the application to make sure of the same or an improved level of service

after the application is transformed.

www.manaraa.com

Chapter 5 The Palestinian e-Government Cloud Applications Transformation Framework

55

5.1.3. Knowledge Base

In knowledge base component complex structured and unstructured information used for the

government decision makers and managers, depending on this component the application will be

integrated as a model in the e-Government decision making systems.

Currently the decision making systems has not been built despite of the government data is hosted in

the datacenter, so it is important to design the knowledge base component in the transformation

framework in order to take the data analysis into consideration when transforming legacy applications

to the cloud.

The knowledge base component will provide the decision making system with statistics, reports, data

interaction, and graphs e.g info graphs.

5.2. Process software Lifecycle Development

In this component a full lifecycle for developing the Saas application from analysis to design, as

shown in Figure 5.2 the process software lifecycle component is composed of assessment, analysis,

and plan components.

5.2.1. Assessment

We can't just take any application to the cloud, we should move only those that will yield value from

running on a cloud infrastructure.

During this assessment, we will evaluate several business and technical characteristics of the

application.

During our applications transformation approach, we will assess applications and determine if they're

suitable for running in the cloud, In addition to that the assessment component will determined the

components and the services that need to be moved to the cloud.

Highly suitable applications are those that can be replaced by existing software as a service offerings.

Or they're applications whose business and technical characteristics align with the target cloud

platform's attributes.

The following assessment criteria's will be used for assessing application's transformation, and we

will evaluate the proposed framework against them in chapter 7.

 The application needs to integrate with other applications.

 The reused of existing components.

 The application uses a centralized authentication service.

www.manaraa.com

Chapter 5 The Palestinian e-Government Cloud Applications Transformation Framework

56

 The application uses supporting services such as the reporting service, and the knowledge

base services.

 The application uses the Central e-Government database and interacts with SOA

framework.

 The application's architecture changed frequently according to the customer needs.

 The application's development needs involvement of the customer.

And for those applications not suitable for the cloud, we propose three options:

 Retire application.

 Leave it as is.

 Migrate to a traditional infrastructure.

5.2.2. Analysis

Analyzing the application, defining its user and system requirements, and cloud transformation

requirements whereas the legacy application has special consideration in transforming to the cloud,

the application components need to be defined, and the interactions between these components

need to be clarified.

Assess application

Retire application

Cloud

suitability
Leave it as is

Migrate to a traditional

infrastructure

Not suitable

Suitable

Analyze the

application

Design the

transformation plan

Figure 5.2 The Cloud Application Transformation Lifecycle Component

www.manaraa.com

Chapter 5 The Palestinian e-Government Cloud Applications Transformation Framework

57

During the analysis process, the service analysis is presented in the early stages before moving to

service specifications component (Section 5.3.1), service analysis process begins with information

gathering that are results in creation of conceptual service structure.

The service analysis process is commonly carried out iteratively for each business process to

achieve the agility in development and transformation, and to guarantee the integrability between

application services and other applications services.

In addition, the service analysis component determines the scope of service use and the service

interfaces for use.

Figure 5.3 introduces the service analysis activities, a complete top-down processes are carried

out, compromised of numerous iterations through service analysis.

Figure 5.3 shows how service analysis actually represents a parent process consisting of two

information gathering steps and then a third step represented by the service modeling sub-process.

 Define Analysis Scope

During this step business analysts are asked to clearly establish the boundary of the analysis. Most

commonly, there is a ratio of one analysis process to one business process definition. However,

business processes can be complex or multi-layered (containing nested processes) and may or may

not already be representing portions of business logic. Therefore, this step may also require

identifying portions of a given business process for which service modeling is not required.

 Identify Affected Systems

Define analysis scope Identify affected systems

Information gathering

Service Modeling process

Figure 5.3 Service Analysis Activities

www.manaraa.com

Chapter 5 The Palestinian e-Government Cloud Applications Transformation Framework

58

It is helpful to have an understanding of what existing parts of the enterprise will be affected by the

scope of the planned business process analysis. Especially relevant are legacy systems that may

later raise service encapsulation and autonomy challenges. These types of constraints can directly

impact the partitioning of logic into services and the ultimate granularity at which service

candidates are defined.

 Service Modeling Process

Service modeling is the process of conceptualizing services and capabilities prior to their actual

physical definition and development. Because nothing concrete is defined during this stage, we

introduce the service modeling and specifications in Section 5.3.1.

5.2.3. Plan

In this component, the analyst will design the transformation plan, in this plan all the jobs of

transformation will be defined and the roles and responsibilities of transformation team including

the stockholders to achieve the agility.

To identify applications for transformation to a cloud, it is necessary to first identify and

understand the business and technical factors for the transformation. integrability and business

agility are typical business factors for application transformation to clouds. Cloud computing can

provide significant integrability because of the service classification and integrability.

After an application has been identified as a candidate for cloud transformation, based on business

and technical factors, it is necessary to consider for what type of cloud environment SaaS, PaaS,

or IaaS the application is best suited.

a. Classified as Software as a Service

Based on the type of application, and if SaaS-based alternatives exist, it is worth considering if

the SaaS alternatives can meet both business and technical needs. Such a change is no longer an

application transformation but more of a replacement of the existing application with a SaaS

option. There might still be a need to migrate existing data to the new application.

SaaS removes the need to manage both the application and the infrastructure on which the

application is deployed. This approach can be attractive, but certain criteria, such as service-level

www.manaraa.com

Chapter 5 The Palestinian e-Government Cloud Applications Transformation Framework

59

agreements (SLAs), data portability, and long-term costs, must be carefully evaluated when

considering a SaaS deployment.

b. Classified as Platform as a Service

Platform as a service might be an option for transformation business applications that are based

on standard application server software such as apache, mysql and oracle.

In this model, the service provider manages the application platform software and might provide

access to common application services such as SQL databases. The application platform might

be shared by multiple applications belonging to different customers. How the application

platform is mapped to the physical infrastructure is typically controlled by the cloud service

provider.

The decision factors in such a transformation will depend on the type and version of the

application server used. Some PaaS environments might not support all features of the

application server and might require application changes.

c. Classified as Infrastructure as a Service

Ttransformation of an application to an IaaS involves deploying the application on the cloud

service provider’s servers. The initial step in making a decision to transform to an IaaS model is

to determine whether the cloud-based server hardware and operating system (OS) are compatible

with the current server’s hardware and OS.

For example, if an application is running on an x86 server, the cloud servers must be able to

implement x86 instructions. If the hardware is not compatible, the application might need to be

recompiled or redeployed for the new platform. Similarly, if the OS is compatible, few changes

will be required when the application is migrated.

5.3. SaaS Architecture

One of the cloud framework components, which capture the relevant aspects of SOA specifications,

architecture, and implementation; and the technology component which is responsible for the

techniques used for the implementation, the security models, and service standards.

5.3.1. Specifications Component

As mentioned in Section 5.2.2 in order to transform an application to the cloud, the application

should be introduced as a Saas, and the services specifications need to be designed.

www.manaraa.com

Chapter 5 The Palestinian e-Government Cloud Applications Transformation Framework

60

A service specification is a description of what you want from a service. It is a working tool for the

Provider to use to structure how they will deliver the service, and it is a document for you to refer

to measure the quality of the service and to take into consideration the goals of the framework such

as the agility and integrability.

During service specifications the developer can identify already defined services, reused

components, and define the interactions with other application services, which enhance the

integrability between systems. The other important achieved goal is that the well-defined service

specification considered as a contract with the customer to inform him with what will be developed

and implemented, these contracts include the provided and required interfaces, and the roles those

interfaces play in the service specification, and the rules or protocol for how those roles interact,

this will increase the development agility.

In service specifications component we will define the SOA solution by modelling the specification

of each service in detail. A service specification must specify everything that a potential consumer

of the service needs to know to decide if they are interested in using the service, as well as exactly

how to use it. It must also specify everything a service provider must know to successfully

implement the service. Thus, a service specification is a mediator or a contract between what

consumers need and what providers provide.

Service specifications include at least the following information:

 The name of the service, suggesting its purpose.

 The provided and required interfaces, thereby defining the functional capabilities that are

provided by the service and those that it requires of its consumers.

 Any protocol that specifies rules for how the functional capabilities are used or in what

order.

 Constraints that reflect what successful use of the service is intended to accomplish and how

it will be evaluated.

 Qualities that service consumers should expect and that providers are expected to provide,

such as availability, performance, footprint, suitability to the task, competitive information,

and so forth.

 Policies for using the service, such as security and transaction scopes for maintaining

security and integrability or for recovering from the inability to successfully perform the

service or any required service.

www.manaraa.com

Chapter 5 The Palestinian e-Government Cloud Applications Transformation Framework

61

5.3.2. Realization Component

The realization component is responsible for realizing the services.

The realization will depend on the SOA-Based Integrated Central Database that introduced by [1],

as discussed in Section 2.2, The main components of the framework are: ESB, Web Services,

databases, e-Government portals, governmental business applications, and front-end applications.

5.4. Cloud Infrastructure

The cloud infrastructure as introduced in Chapter 4 consists of a main data centre that is composed of

two clustered physical servers with a shared storage.

Currently the Palestinian government has a datacentre for hosting the e-Government cloud, in this

datacentre the servers and resources are virtualized in order to present a full cloud platform.

The cloud applications interact with these virtual servers as it is single logic resource, this virtualization

grantee the separation of services and easy the interactions in cloud environment.

The cloud infrastructure module is explained in details in Section 4.1.

5.5. Conclusion

The transformation framework for the Palestinian e-Government applications is a suitable architectural

style for transforming applications to the cloud environment as it take into considerations all the

Palestinian e-Government environment needs.

The framework components interaction flow guarantees the objectives of this research which are the

agility and integrability, the integrability between cloud applications will be achieved throw the service

specifications in the SaaS architecture component, and the agility will be achieved by the separation

between the components and the ordered steps in transformation process lifecycle component.

The proposed framework composed of three main components: the application profile which describes

the application profile and characteristics, and the software lifecycle component in which the

assessment and analysis components are applied, and the Saas architecture component for realizing the

Saas.

www.manaraa.com

Chapter 6 Framework Scenario Applying

62

Chapter 6 Framework Scenario Applying

In this chapter we present applying a scenario of the framework, we introduce the scenarios as a

use case scenarios.

In this applying we provide a proof of concept to provide a specific usage scenario for the

framework, and through such scenario the framework is validated to perform its requirements.

 We use two scenarios for applying the framework, the first scenario introduces a full transformation

process for the Administrative Correspondence System (ACS) which is a legacy application. The

second scenario will introduce an assessment of the National Frequency System (NFS) that fails to

transform to the cloud.

The framework components that are applied include: application profile where the project profile

and characteristics and functionalities are described, the process software lifecycle component in

which we discuss the assessment process and the analysis process, and the SaaS architecture to

describe the service specifications and implementations.

6.1. Scenario 1: Administrative Correspondence System (ACS)

ACS is a legacy application responsible for all the administrative management, task flows, and

monitoring, currently the ACS system is running in many ministries, and benefits from the

government central database and interact with some other services such as single sign on, and the

access control list system. According to the manager of web applications development division,

there is a serious need to overcome the integrability among ACS services, and the rapid changes in

user requirements. There for we suggested to apply the cloud transformation framework and assess

if the transformation can solve these issues.

6.1.1. Application Profile

Referring to Section 5.2, we will introduce a full description of the project in this section, The

Administrative Correspondence System proposed by the Ministry of Information Technology to

follow-up paper operations that are traded in the Ministry of Communications and Information

Technology and computerization to facilitate access them from all parties to existing users in the

system and this leads to increased work efficiency and facilitate access to the references.

www.manaraa.com

Chapter 6 Framework Scenario Applying

63

a. Project Profile

The ACS system is a web application developed using php codeignitor framework depending on

the MVC design pattern and based on oracle database and uses government central database to

use the employee data.

All web forms are based on a standard design and user experience to less the errors and help

users to interact easily with the system, using the html5 and bootstrap techniques to make the

design responsive for all devices. The Main system functionalities include:

 Users and groups privileges. The administrator can add, edit, and change users and groups

privileges. This module uses the e-Gov ACL system which is a central access control list

system, designed to serve central applications to ease the ACL management, and to central

permissions granting process.

 Contacts. Used to add, edit contact data for employee, this module depends on the govdata

to retrieve contact data.

 Messages. Concerns sending administrative messages, receiving messages, and forwarding

messages.

 Attachments. Concerns with attachments manager for all messages types, this module

works as an archive repository for formal messages.

 Tasks. Focusses on managing the employee tasks that assigned depending on a particular

message. The employee and the manager can monitor tasks progress, and export monthly

reports.

 Reports. Responsible for reporting in the ACS system, the user can export various types of

reports in various formats.

Certain criteria, such as service-level agreements (SLAs), data portability, and long-term costs,

must be carefully evaluated when considering a SaaS deployment.

In this scenario applying we will not list these parts of Application profile component.

6.1.2. Process Software Lifecycle

a. Assessment

During this assessment, we evaluate several business and technical characteristics of the

application. According to the assessment component introduced in Section 5.2.1, we assess the

www.manaraa.com

Chapter 6 Framework Scenario Applying

64

application and determine if it is suitable for running in the cloud, In addition the assessment

component determines the components and the services that need to be moved to the cloud.

The ACS application interacts with several web service and data providers, the employee profile

service reads the data of employees that stored in the government data centre, the contact

information reads the single sign on contact data, etc.

The ACS application uses several central services such as the e-Government Access Control List

system (ACL), the Single sign on, and the reporting system. The users and groups module will

depend on the e- Government ACL system depending on its services, and will uses the single sign

on system for authentication process. The reporting module depends on the e-reporting service,

which build using the jasper reporting server [30].

As mentioned previously, the ACS application highly suitable for transforming to the cloud as it

has several modules can be introduced as a service.

The other main reason for transforming the application to the cloud, that the application itself will

serve several ministries, institutes, and private sector. This will lead to introduce its services as

software as a service.

In next section we analyse the system services and modules, and break down its functionalities.

b. Analysis

1- Application Analysis

In analysis module, we analyse the ACS application, define the context diagram, and the use case

diagram.

Figure 6.1 shows the context diagram of the application components, the context components are

divided into 3 types, the system services which are responsible for the system functions like

messages, attachments, and tasks; the support services like single sign on, access control list

service, and the reporting service; and finally the government central data.

www.manaraa.com

Chapter 6 Framework Scenario Applying

65

Figure 6.2 shows the use case diagram of the ACS application, there are 3 main types of users,

the administrator who will be responsible for creating a new instance project for the ACS

application, load the employee hierarchy or read it from govdata, and define the groups and

privileges of users and groups. The second user type is the message sender user or the guest who

will send a message or a task to the ministry, and the message will be forwarded to a particular

division. The third user type is the employee, who will receive and send messages depending on

his position in the institute, define contacts groups, define tasks, create plans, and export reports.

2- Service Analysis

During analysis process, we present the service analysis (see Section 5.2.2), first in the analysis

scope we present the scope of the analysis which is the first layer of the application services, in

the scenario applying we don’t present the sub services or the multi-layered services.

The affected systems by the transformation of the ACS application includes: the standard

applications database as the application database will be moved to the standard applications

database, the decision making system, e-Government central database, and the central access

control list system ACL.

ACL management

ACS DATABASE

ACS application

System Services

messages attachments tasks

Single Sign on Service

Figure 6.1 The ACS Context Diagram [as introduced in system requirments documents]

www.manaraa.com

Chapter 6 Framework Scenario Applying

66

Figure 6.2 The Use Case Diagram of the ACS Application

System services presented in Figure 6.3 include the following services:

 Messages Services

o Send Message.

o Forward Message.

o Show Message.

o List Messages.

www.manaraa.com

Chapter 6 Framework Scenario Applying

67

 Attachments Services

o Add Attachment.

o Read Attachment.

o Archive Attachment.

o Search Attachment.

o List Attachment.

 Tasks Services

o Add Task.

o Forward Task.

o List Tasks.

o Monitor Task Flow.

ACS application

Messages

o Send.

o Forward.

o Show.

o List.

Attachments

o Add.

o Read.

o Archive.

o Search.

o List.

Tasks

o Add.

o Forward.

o List.

o Monitor Flow.

Standard applications ESB ACS

Database

System Services

Figure 6.3 ACS Service Analysis

www.manaraa.com

Chapter 6 Framework Scenario Applying

68

c. Plan

In this component, we design the transformation plan, in this plan all the jobs of transformation

are defined.

Whereas the transformed application will replace the existing ACS legacy application, and the

application functionalities introduced as services, the application benefits from cloud supporting

services such as SSO, ACL, reporting system, and the application data migrated to the central

database and standard applications database. The ACS transformation classified as a Saas

application.

Government ESB

Single Sign on Service

ACL system

ACS application

Reporting system

Employee

data

Contact info

System Services

Messages Attachments Tasks

Standard applications ESB

ACS Database

Figure 6.4 ACS Cloud Application Context Diagram

Knowledge base

Monitoring Service

www.manaraa.com

Chapter 6 Framework Scenario Applying

69

To identify applications for transformation to a cloud, it is necessary to first identify and understand

the business and technical factors for the transformation as mentioned previously in section 5.2.3.

The ACS system has three types of services, the system services which are responsible for the

system functions like messages, attachments, and tasks; the support services like single sign on,

access control list service, the knowledge base service, the monitoring service, and the reporting

service; and finally the government central database.

As the system will be introduced as a software as a service, and it will serve many institutes, we

need to separate the services as shown in Figure 6.4.

The database will be defined as an application database which will use the standard application

enterprise service bus, and the employee data and contact data which will use the govdata enterprise

service bus.

This classification in data sources will increase the integrability of the system as it will help other

applications to deal with ACS data easily using the government SOA architecture [1].

Then the supporting services will be separated from the ACS application, the ACS application will

use their API to benefit from their functions.

This classification in databases and services will achieve the integrability and business agility for

application transformation to cloud. Cloud computing can provide significant integrability because

of the service classification and integrability as mentioned previously.

6.1.3. SaaS Architecture

This component capture the relevant aspects of SOA specifications, architecture, and

implementation; and the technology component which will be responsible for the techniques used

for the implementation, the security models, and service standards.

a. Service Specifications

As mentioned previously the services will be classified into three types, the cloud supporting

services, the data services which will be designed and deployed using the government central

database enterprise service bus, and the system services.

 Cloud Supporting Services Specifications

o Single sign on service

Single Sign-On (SSO) service allow a single authentication process for deferent service

providers, currently the Palestinian e-Government adapted the security markup language for

single sign on service.

www.manaraa.com

Chapter 6 Framework Scenario Applying

70

Security Assertion Mark-up Language (SAML) provides a secure, XML based solution for

exchanging user security information between an identity provider (General Administration of

e-Government) and a service provider (governmental institutes) [31].

The SAML standard defines rules and syntax for the data exchange, yet is flexible and can

allow for custom data to be transmitted to the external service provider.

The SSO service provide an API used for authentication based on SSL/TLS secure channel for

exchanging security data between service provider and identity provider that achieves the

integrability between the SSO service and the cloud application. The Service Level Agreement

of the SSO is provided with the service API.

o Access control list service

ACL service allow a central management form for granting permissions for all e-Government

applications. ACL provides a web service to check user rights. The ACL provides an API used

for integrating with the ACL service based on government SOA.

o Reporting service

Reporting Services provides a full range of ready-to-use tools and services to create, deploy,

and manage reports for applications. Reporting Services includes programming features that

enable you to extend and customize your reporting functionality.

Reporting Services is a server-based reporting platform that provides comprehensive reporting

functionality for a variety of data sources. Reporting Services includes a complete set of tools

to create, manage, and deliver reports, and APIs that enable developers to integrate or extend

data and report processing in custom applications. The reporting service uses the JasperReports

Server [32] which is a stand-alone and embeddable reporting server. It provides reporting and

analytics that can be integrated to the cloud applications. JasperReports Server is optimized to

share, secure, and centrally manage your Jaspersoft reports and analytic views.

 System Service Specifications

System service specifications are presented in Table 6.1

Table 6.1 System Service Specifications

Service name input parameters Protocols Constraints and policies

Send Message Message number,

Message date,

http, JSON SSO, SOA ESB, and Service level

agreement

www.manaraa.com

Chapter 6 Framework Scenario Applying

71

Message sender id,

Message content,

Sender signature,

Receivers ids,

Notes,

End date

Forward Message Message number,

Message date,

Message sender id,

Message content,

Sender signature,

Receivers ids,

Message Type

Notes,

End date

http, JSON SSO, SOA ESB, and Service level

agreement

Show Message Message number,

Message date,

Message sender id,

Message content,

Sender signature,

Receivers ids,

Message Type

Notes,

End date

http, JSON SSO, SOA ESB, and Service level

agreement

List Messages Receiver Id,

Message Type

http, JSON SSO, SOA ESB, and Service level

agreement

Add Attachment Message Id,

Attachment Type,

Attachment Title

http, JSON SSO, SOA ESB, and Service level

agreement

Read Attachment Attachment Id http, JSON SSO, SOA ESB, and Service level

agreement

Archive Attachment Attachment Id http, JSON SSO, SOA ESB, and Service level

agreement

Service name input parameters Protocols Constraints and policies

Search Attachment Attachment Title,

Message Title

http, JSON SSO, SOA ESB, and Service level

agreement

www.manaraa.com

Chapter 6 Framework Scenario Applying

72

List Attachments Message Id http, JSON SSO, SOA ESB, and Service level

agreement

Add Task Message Id,

Task Title,

Employee Id,

Manager notes,

End Date

http, JSON SSO, SOA ESB, and Service level

agreement

Forward Task Task Id,

Employee Id

http, JSON SSO, SOA ESB, and Service level

agreement

List Tasks Employee Id,

Date

http, JSON SSO, SOA ESB, and Service level

agreement

Monitor Task Flow Message Id,

Task Id,

Employee Id

http, JSON SSO, SOA ESB, and Service level

agreement

6.2. Scenario 2: National Frequency System (NFS)

NFS is a legacy application responsible for management the national frequency in Palestine, the

NFS application serves different types of stakeholders and according to the manager of web

applications development, the applications faces many issues in development due to the changes

in user needs. Details about NFS is discussed in next section, and the assessment component of

the application transformation suitability.

6.2.1. Application Profile

Referring to Section 5.2, we will introduce a full description of the project in this section, The

National Frequency System proposed by the Ministry of Information Technology to manage the

licenced frequency of the working companies in Palestine.

a. Project Profile

The NFS system is a web application developed using php codeignitor framework depending

on the MVC design pattern and based on oracle database.

www.manaraa.com

Chapter 6 Framework Scenario Applying

73

All web forms are based on a standard design and user experience to less the errors and help

users to interact easily with the system, using the html5 and bootstrap techniques to make the

design responsive for all devices.

 Main system functionalities:

o Frequencies management. The system user can add, edit, and manage the frequencies range

for every registered company.

o Frequencies Services. Used to add, edit services provided by telecommunication

companies.

o Banned Types. To specify the banned frequencies numbers and types.

o Companies. To register the licenced campanies.

Certain criteria, such as service-level agreements (SLAs), data portability, and long-term costs,

must be carefully evaluated when considering a SaaS deployment. In this scenario we will not list

these parts of Application profile component.

6.2.2. Process Software Lifecycle

a. Assessment

During this assessment, we will evaluate several business and technical characteristics of the

application. According to the assessment component introduced in Section 5.2.1, we will assess

application and determine if it is suitable for running in the cloud.

As mentioned previously the NFS is composed of 4 types of services, that considered as standalone

services, these services will not interact with other governmental applications, and the application

data stored in a database separated from the government central database, as this data is used for

licencing purposes in the Ministry of Telecom and Information technology.

The NFS is a standalone application that doesn't need to interact with other government services,

and it has a low number of audience and stockholders.

As mentioned previously, the NFS application is not suitable for transforming to the cloud as it

has no services can be introduced as a service.

The other main reason for failing in transformation assessment is that the application itself will not

serve other ministries, institutes, nor private sector. This will lead to leave the application as it is

according to the assessment result introduced in section 5.2.1.

6.3. Discussions and Conclusions

www.manaraa.com

Chapter 6 Framework Scenario Applying

74

The scenario applying as discussed in sections 6.2 and 6.3 provide evidence on how far it achieves

the goals of the framework. It is clearly seen that the applying in scenario 1 performs the main

functionalities of the proposed framework which are:

The application profile, the process software lifecycle, and the SaaS architecture, the scenario 2

performs the application profile, and the process software lifecycle, and it fails in the assessment

process.

In scenario 1 applying the framework achieves the goals of the proposed framework which are: the

agility in transforming applications to the cloud. It was seen that main components in the framework

are included in the scenario, and the components of the realization are mapped to their counter parts

in the framework to achieve this goal. The other goal achieved during realizing the framework is

the interaction between the application components, and the ability to interact with other cloud

applications as clarified in the discussion in components implementation. The framework

realization acts as a proof of concept for the validation of the framework, since it showed that the

framework can be realized and implemented and hence the concept of the framework is validated.

Evaluating the framework is discussed in next Chapter, the evaluation will be against the targeted

research goals which are integrability and agility.

www.manaraa.com

Chapter 7 Framework Evaluation

75

Chapter 7 Framework Evaluation

In this chapter we present the evaluation of the framework and its scenario applying. The evaluation

will be conducted against the targeted quality attributes which are agility, and integrability. The

chapter discusses the quality attributes and presents the evaluation of the framework based on

ATAM (see section 2.3) and validation of the framework concept using a usage scenario.

7.1. Framework Quality Attributes

The Software Engineering Institute (SEI) believe that the suitability of architecture is determined

by the quality attribute requirements that are important to the stakeholders of a system. And hence

a given software architecture is suitable for its intended purpose in case of fulfilling the quality

attributes. Measurement plays a critical role in effective and efficient software development, as well

as provides the scientific basis for software engineering evaluation that makes it a true engineering

discipline [33]. Quality attribute scenarios are usually used to specify quality attribute requirements.

Also many quality concerns are primarily handled or strongly affected by the runtime environment.

In the thesis work, the framework quality attributes to be evaluated need to be clearly defined, as

follows:

7.1.1. Integrability

Software system integrability refers to the ability of combining individually tested software

components into an integrated whole. Software is integrated when components are combined into

subsystems or when subsystems are combined into application [34] .

Integrability is bound up in the concept of component interface, In our case, the integrability

concept refers to the ability of other application services reused and supports cloud application

services.

In cloud applications transformation frameworks, cloud applications usually interact with other

applications, and introduce their services as Saas.

7.1.2. Agility

www.manaraa.com

Chapter 7 Framework Evaluation

76

Transformation to cloud exhibit more structured in application services to introduce applications

as a software as a service, the key point in transformation process is the agility in implementing

the cloud framework components. It is also important in service implementation to be agile.

As introduce in Section 2.3, although agile development methodologies are successful in dealing

with changes, but they don’t act well against complexities which are the nature of Saas projects

because of the lack of the pre-defined design of system. For developing each system, a structure

or architecture is needed for better communication between stakeholders and when the system is

larger and more complex, the architecture is required more.

To realize the agility concept and achieves the research goals, a well-defined framework

architecture is designed, the components are defined, and during application transformation the

application architecture should be discussed with stockholders.

Next we evaluate the applied scenario framework against these quality attributes using ATAM

method.

7.2. Framework Evaluation using ATAM Method

What we aim to do in the ATAM, in addition to raising architectural awareness and improving the

level of architectural documentation, is to record any risks, sensitivity points, and tradeoff points

that we find when analysing the architecture (see section 2.6).

Risks, sensitivity points, and tradeoff points are areas of potential future concern with the

architecture. These areas can be made the focus of future effort in terms of prototyping, design,

and analysis.

A prerequisite of an evaluation is to have a statement of quality attribute requirements, in this

research are: agility and integrability. The requirements to conduct the evaluation are evaluation

team and stakeholder staff. The Evaluation team typically check the architectural approaches used

to address the important quality attribute requirements specified in the scenarios. The goal is to

assess whether these quality attribute requirements can be met. In our case the evaluation team is

the team manager responsible for transformation process and all his team members.

www.manaraa.com

Chapter 7 Framework Evaluation

77

7.2.1. Integrability Evaluation Scenarios

The main features that provide the integrability of the proposed framework are presented in

table 7.1.

Table 7.1 : Integrability supporting Features

Integrability supporting Features Satisfied(yes,no)

1. The framework supports integrability with other application's services yes

2. The framework allow integrates and reuse components. yes

3. The system services can be integrate to other applications yes

4. The framework allows having service users and providers to use different

implementation languages and platforms.

yes

5. The authentication mechanism will be centralized and realized using

Web Service.

yes

6. The framework introduces supporting services such as the reporting

services, the knowledge base service.

yes

7. All application's web services implemented using the SOA based

framework and the government ESB to maintain the integrability feature.

yes

8. Service Specifications component provides interfaces, protocols, and

message formats

yes

The proposed framework satisfy these features as follow:

 The framework architecture supports application integrability with other application's service,

where the framework architecture is classified into three components, and the service

component is separated in a standalone component.

 As introduced in Section 6.1.3, the framework allows integrates with existing components

and services, the ACS application reused the Single Sign On service, and the framework

introduced supporting services.

 The system services can be integrated to other applications (e.g. the knowledge base service

can be integrated to the application services).

 The framework implement its services as web services, the SaaS architecture is a component

of the framework, this leads to the ability to use different implementation languages.

 The framework services implemented in the SaaS component using the SOA based

framework and the government ESB.

7.2.2. Agility Evaluation Scenarios

The main features that provide the agility in transformation process framework are presented in

table 7.2.

Table 7.2: Agility supporting Features

www.manaraa.com

Chapter 7 Framework Evaluation

78

Agility supporting Features Satisfied(yes,no)

1. The framework supports customer changing in user requirements. yes

2. The framework supports customer engagement in transformation

process

yes

3. The framework architecture is clear to the customer yes

4. The framework components' interfaces are clarified and discussed with

stockholders.

yes

5. The framework contains a transformation plan including an assessment

phase.

yes

6. The framework contains service classification component. yes

7. The transformation can be done partialy. yes

The proposed framework satisfy these features as follow:

 The framework architecture responds to the application architecture changes easily.

 The framework supports customer engagement in transformation process as introduced in

Application Profile component, the customer has main roles in project profile definition.

7.3. Showing Quality Attributes Achievement Through a Usage Scenario

To evaluate the proposed framework and the applied scenario, we consider a usage scenario (see

section 2.6). Figure 7.1 introduces the flow of this scenario and the interactions between

components as follows:

1- The application profile is prepared and discussed with stockholders.

2- The application is assessed to check its suitability for transforming to the cloud.

3- The application is analyzed and its components are defined.

4- The transformation plan is designed, and services are defined.

5- The application services, and cloud supporting services, and interactions between services are

defined.

6- The application is transformed to cloud and introduced as Saas.

Application

Profile

ACS application

Assessment Plan

Analysis

www.manaraa.com

Chapter 7 Framework Evaluation

79

The presented scenario outlines how applying the framework fulfills the quality attributes which

are agility and integrability.

For the quality attributes discussion, first, agility achievement is clear in this scenario, this is

because the well-defined framework architecture. The integrability attribute, achieved in the

process flow of transformation, and the interaction between components.

7.4. Conclusion and discussion

The proposed framework is evaluated using a scenario based software architecture evaluation

method and proves that it achieves the quality attributes set as goals for the framework which are:

Integrabality, and agility. Moreover, a scenario of application transformation is adapted and

validated. A specific usage scenario for the framework is discussed and further proves that the

framework accomplishes its functionality and quality attributes.

Figure 7.1 Usage Scenario for Applying Framework

www.manaraa.com

References

80

Chapter 8 Conclusions and Future Work

8.1. Conclusions

In this research we introduced a cloud transformation framework, the current situation of the e-

Government cloud infrastructure was analysed and discussed.

The proposed framework contains three main components, the Application profile component

which describe the application and introduces its characteristics and functionalities, the software

development lifecycle component, in which the assessment of the cloud suitability is presented, the

analysis of the application components, and the transformation plan is presented; and finally the

Saas specification component which discuss the service specifications and implementation.

The framework has been applied through applying the transformation of a legacy application, parts

of the framework was applied to achieve the research goals which are the agility, and the

integrability.

The framework was evaluated based on the ATAM evaluation method, the scenario based method

was introduced, and the framework achieves the goal of the research.

8.2. Future Work

In this research we designed a cloud transformation framework, and define its components, and

interactions. The framework is not fully applied, but a scenario was introduced.

The framework doesn't address features such as interoperability and interconnectivity,

Interoperability is the ability of software to use the exchanged information and to provide something

new originated from exchanged information whereas interconnectivity is the ability of software

components to communicate and exchange information. Thus, interconnectivity is a prerequisite

for interoperability and those two – interconnectivity and interoperability - are intertwined with

functionality and visible at runtime, and may increase the benefits of cloud transformation.

Moreover the framework did not address the issue of scalability of enterprise applications

Future direction in this research could be summarized as follows:

 Full and complete appyling of the framework.

 Enhancing the framework by adding features interconnectivity, and interoperability.

 Providing semantic capabilities to the framework for scalability.

[1-18, 20-27, 29-59]

www.manaraa.com

References

81

References

[1] R. S. Baraka and S. M. Madoukh, "A conceptual SOA-based Framework for e-Government Central

Database," in Computer, Information and Telecommunication Systems (CITS), 2012 International
Conference on, 2012, pp. 1-5.

[2] S. Venkatraman and B. Wadhwa, "Cloud computing: A research roadmap in coalescence with software
engineering," SEIJ, vol. 2, pp. 7-18, 2012.

[3] Z. Mahmood and S. Saeed, Software engineering frameworks for the cloud computing paradigm:
Springer, 2013.

[4] K. K. Hausman, S. L. Cook, and T. Sampaio, Cloud Essentials: CompTIA Authorized Courseware for Exam
CLO-001: John Wiley & Sons, 2013.

[5] L. Wang, G. Von Laszewski, A. Younge, X. He, M. Kunze, J. Tao, et al., "Cloud computing: a perspective
study," New Generation Computing, vol. 28, pp. 137-146, 2010.

[6] C. N. Hoefer and G. Karagiannis, "Taxonomy of cloud computing services," in GLOBECOM Workshops (GC
Wkshps), 2010 IEEE, 2010, pp. 1345-1350.

[7] V. Matveev, "Platform as a Service-new opportunities for software development companies," 2010.
[8] M. Turner, D. Budgen, and P. Brereton, "Turning software into a service," Computer., vol. 36, pp. 38-44,

2003.
[9] B. Waters, "Software as a service: A look at the customer benefits," Journal of Digital Asset Management,

vol. 1, pp. 32-39, 2005.
[10] L. Lindstrom and R. Jeffries, "Extreme programming and agile software development methodologies,"

Information systems management, vol. 21, pp. 41-52, 2004.
[11] D. Thomas, "Enabling Application Agility-Software as A Service, Cloud Computing and Dynamic

Languages," Journal of Object Technology, vol. 7, pp. 29-32, 2008.
[12] K. Henttonen, M. Matinlassi, E. Niemela, and T. Kanstren, "Integrability and Extensibility Evaluation from

Software Architectural Models- A Case Study," The Open Software Engineering Journal, vol. 1, pp. 1-20,
2007.

[13] H. Hai and S. Sakoda, "SaaS and integration best practices," Fujitsu Scientific and Technical Journal, vol.
45, pp. 257-264, 2009.

[14] P. Bianco, R. Kotermanski, and P. F. Merson, "Evaluating a service-oriented architecture," 2007.
[15] R. Kazman, M. Klein, and P. Clements, "ATAM: Method for architecture evaluation," DTIC Document2000.
[16] L. Bass, Software architecture in practice: Pearson Education India, 2007.
[17] M. Barbacci, P. C. Clements, A. Lattanze, L. Northrop, and W. Wood, "Using the Architecture Tradeoff

Analysis Method (ATAM) to evaluate the software architecture for a product line of avionics systems: A
case study," 2003.

[18] J. Butler, "The architecture component of the SAE reference framework for SOA," http://everware-
cbdi.com/document_34, 2015.

[19] S. Kambhampaty, "Service oriented analysis and design process for the enterprise," in 7th WSEAS
International Conference on Applied Computed Science, Venice, Italy, 2007.

[20] R. Kamatchi and A. Rakshit, "Service Oriented Analysis and Design with educational information system,"
in 2011 World Congress on Information and Communication Technologies, 2011.

[21] O. Zimmermann, P. Krogdahl, and C. Gee, "Elements of service-oriented analysis and design," IBM
developerworks, 2004.

[22] C. Handling, "SOMA–Service Oriented Modeling and Architecture."
[23] A. Arsanjani and A. Allam, "Service-Oriented Modeling and Architecture for Realization of an SOA," in

Services Computing, 2006. SCC '06. IEEE International Conference on, 2006, pp. 521-521.
[24] G. Lewis, E. Morris, and D. Smith, "Service-oriented migration and reuse technique (smart)," in Software

Technology and Engineering Practice, 2005. 13th IEEE International Workshop on, 2005, pp. 222-229.
[25] V. Kundra, "Federal cloud computing strategy," 2011.

http://everware-cbdi.com/document_34
http://everware-cbdi.com/document_34

www.manaraa.com

References

82

[26] A. J. Rani, "Analytical Study of Agile Methodology with Cloud Computing," IJCA Proceedings on National
Workshop-Cum-Conference on Recent Trends in Mathematics and Computing 2011, 2012.

[27] R. Guha and D. Al-Dabass, "Impact of Web 2.0 and Cloud Computing Platform on Software Engineering,"
in Electronic System Design (ISED), International Symposium on, 2010, pp. 213-218.

[28] R. Guha and D. Al-Dabass, "Impact of web 2.0 and cloud computing platform on software engineering," in
Electronic System Design (ISED), 2010 International Symposium on, 2010, pp. 213-218.

[29] S. Frey and W. Hasselbring, "Model-based migration of legacy software systems to scalable and resource-
efficient cloud-based applications: The cloudmig approach," in CLOUD COMPUTING 2010, The First
International Conference on Cloud Computing, GRIDs, and Virtualization, 2010, pp. 155-158.

[30] T. Danciu, "The JasperReports Ultimate Guide," ed, 2002.
[31] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. Tobarra, "Formal analysis of SAML 2.0 web

browser single sign-on: breaking the SAML-based single sign-on for google apps," in Proceedings of the
6th ACM workshop on Formal methods in security engineering, 2008, pp. 1-10.

[32] M. LaMonica, "Open source meets business intelligence," CNET News. com, published: April, vol. 23, p.
2006, 2006.

[33] S. H. Kan, Metrics and models in software quality engineering: Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[34] S. S. Alhir, "Understanding the Unified Process (UP)," Methods & Tools, vol. 10, pp. 2-17, 2002.
[35] D. Das and K. Vaidya, "an agile process framework for cloud application development," Computer

Sciences Corporation, leading edge forum2011.
[36] J. Butler, "The architecture component of the SAE reference framework for SOA," CBDi Journal,

http://www. cbdiforum. com/secure/interact/2007-03/the_architecture_component. php, 2007.
[37] S. Patidar, D. Rane, and P. Jain, "Challenges of software development on cloud platform," in Information

and Communication Technologies (WICT), 2011 World Congress on, 2011, pp. 1009-1013.
[38] A. Sitalakshmi Venkatraman1 and Bimlesh Wadhwa2 University of Ballarat, "Cloud Computing A Research

Roadmap in Coalescence with Software Engineering," Software Engineering : An International Journal
(SEIJ), vol. 2, 2012.

[39] S. A. Almulla and Y. Chan Yeob, "Cloud computing security management," in Engineering Systems
Management and Its Applications (ICESMA), 2010 Second International Conference on, 2010, pp. 1-7.

[40] Y. Jiang, X. Zhang, Q. Shen, J. Fan, and N. Zheng, "Design of E-Government Information Management
Platform Based on SOA Framework," in Networking and Distributed Computing (ICNDC), 2010 First
International Conference on, 2010, pp. 165-169.

[41] J. Yunliang, Z. Xiongtao, S. Qing, F. Jing, and Z. Ning, "Design of E-Government Information Management
Platform Based on SOA Framework," in Networking and Distributed Computing (ICNDC), 2010 First
International Conference on, 2010, pp. 165-169.

[42] E. Brown. (2011, 15/5/2014). Final Version of NIST Cloud Computing Definition Published.
[43] M. M. Kherajani and M. A. Shrivastava, "Impact of Cloud Computing Platform Based on Several Software

Engineering Paradigm," International Journal of Advanced Computer Research, 2011.
[44] R. Guha, "Impact of Semantic Web and Cloud Computing Platform on Software Engineering," in Software

Engineering Frameworks for the Cloud Computing Paradigm, Z. Mahmood and S. Saeed, Eds., ed: Springer
London, 2013, pp. 3-24.

[45] E. K. Vahid Khatibi, "Issues on Cloud Computing: A Systematic Review " International Conference on
Computational Techniques and Mobile Computing (ICCTMC'2012), 2012.

[46] G. Breiter and M. Behrendt, "Life cycle and characteristics of services in the world of cloud computing,"
IBM Journal of Research and Development, vol. 53, pp. 3:1-3:8, 2009.

[47] A. Patrascu and V.-V. Patriciu, "Logging framework for cloud computing forensic environments," in
Communications (COMM), 2014 10th International Conference on, 2014, pp. 1-4.

[48] P. Mell and T. Grance, "The NIST definition of cloud computing," 2011.
[49] M. Jarrar, A. Deik, and B. Farraj, "Ontology-based Data and Process Governance Framework," Data-Driven

Process Discovery and Analysis SIMPDA 2011, p. 83, 2011.

http://www/

www.manaraa.com

References

83

[50] A. D. M. a. B. F. M. Mustafa Jarrar (BZU), "Ontology-based Data and Process Governance Framework –
The Case of e-Government Interoperability in Palestine," pre-proceedings of the IFIP International
Symposium on Data-Driven Process Discovery and Analysis (SIMPDA’11), pp. 83-98, 2011.

[51] G. H. G.-E. Akram Naser, "Proposed Development Model Of e-Government To Appropriate Cloud
Computing," International Journal of Reviews in Computing vol. 9, 2012.

[52] S. Abhishek and M. Frank, "A Roadmap for Software Engineering for the Cloud: Results of a Systematic
Review," in Agile and Lean Service-Oriented Development: Foundations, Theory, and Practice, W.
Xiaofeng, A. Nour, R. Isidro, and V. Richard, Eds., ed Hershey, PA, USA: IGI Global, 2013, pp. 48-63.

[53] R. AFONSO FRANCOS, "Socio-technical systems simulation and analysis: a goal-oriented framework,"
2011.

[54] I. Sommerville, Software Engineering: Addison-Wesley; 9 edition, 2010.
[55] J. Schulte, "A Software Verification & Validation Management Framework for the Space Industry," 2009.
[56] H. Altarawneh and A. El Shiekh, "A Theoretical Agile Process Framework for Web Applications

Development in Small Software Firms," in Software Engineering Research, Management and Applications,
2008. SERA '08. Sixth International Conference on, 2008, pp. 125-132.

[57] R. Guha, "Toward the Intelligent Web Systems," in Computational Intelligence, Communication Systems
and Networks, 2009. CICSYN '09. First International Conference on, 2009, pp. 459-463.

[58] B. F. Ben Collins-Sussman, and C. Michael Pilato, Version Control with Subversion: O'Reilly Media; 2
edition (June 30, 2009).

[59] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, et al., "A view of cloud computing,"
Communications of the ACM, vol. 53, pp. 50-58, 2010.

